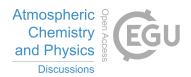


1	Modeling diurnal variation of surface PM _{2.5} concentration over East
2	China with WRF-Chem: Impacts from boundary layer mixing and
3	anthropogenic emission
4	¹ Qiuyan Du, ¹ Chun Zhao*, ¹ Mingshuai Zhang, ^{1,2} Xue Dong, ¹ Yu Chen, ³ Zhen Liu, ⁴ Zhiyuan
5	Hu, ⁵ Qiang Zhang, ⁶ Yubin Li, ¹ Renmin Yuan, ⁷ Shiguang Miao
6	
7	¹ School of Earth and Space Sciences, University of Science and Technology of China, Hefei,
8	China, 230026
9	² PowerChina Huadong Engineering Corporation Limited, Hangzhou, China
10	³ School of Geosciences, University of Edinburgh, U.K.
11	⁴ Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of
12	Atmospheric Sciences, Lanzhou University, Lanzhou, China
13	⁵ Department of Earth System Science, Tsinghua University, Beijing, China
14	⁶ School of Atmospheric Physics, Nanjing University of Information and Technology,
15	Nanjing, China
16	⁷ Institute of Urban Meteorology, Chinese Meteorology Administration, Beijing, China
17	
18	Manuscript for submission to Atmos. Chem. Phys.
19	
20	
21	*Corresponding authors: Chun Zhao (<u>chunzhao@ustc.edu.cn</u>)
22	
23	
24	Key points:
25 26	1. Planetary boundary layer (PBL) mixing is the determinant factor in modeling the
26 27	 diurnal cycle of surface PM_{2.5} concentration over East China PBL mixing coefficient instead of PBL height is the key factor controlling the simulated
28	diurnal cycle of surface $PM_{2.5}$ concentration in WRF-Chem
29	3. The PBL mixing during the night over East China may be underestimated by WRF-
30 31	Chem; Increase of PBL mixing during the night can significantly reduce the modeling biases of surface PM _{2.5} concentration and also the modeling sensitivity to the PBL
32	configuration
33	4. The diurnal cycle and injection height of anthropogenic emission have impacts on
34 25	simulating diurnal cycle of surface PM _{2.5} concentration but smaller than that from PBL mixing
35 36	шлшд



37 Abstract

38 Diurnal variation of surface PM_{2.5} concentration (diurnal PM_{2.5}) could dramatically affect 39 aerosol radiative and healthy impact, and can also well reflect the physical and chemical mechanisms of air pollution formation and evolution. So far, diurnal $PM_{2.5}$ and its modeling 40 capability over East China have not been investigated, and therefore, are examined in this study. 41 42 Based on the observations, the normalized diurnal amplitude of surface PM_{2.5} concentrations 43 averaged over East China is the weakest (\sim 1.2) in winter, and reaches \sim 1.5 in other seasons. The diurnal PM_{2.5} shows the peak concentration during the night in spring and fall and during 44 the daytime in summer. The simulated diurnal $PM_{2.5}$ with WRF-Chem and its contributions 45 46 from multiple physical and chemical processes are examined in the four seasons. The simulated 47 diurnal PM_{2.5} with WRF-Chem is primarily controlled by planetary boundary layer (PBL) 48 mixing and emission variations, and significantly overestimates the observations during the 49 night. This modeling bias is likely primarily due to the inefficient PBL mixing of primary PM_{2.5} 50 during the night. The simulated diurnal PM2.5 is sensitive to the PBL schemes and vertical layer configurations with WRF-Chem. The PBL mixing coefficient instead of PBL height is found 51 52 as the critical factor determining the PBL mixing of pollutants in WRF-Chem. The increase of 53 lower limit of PBL mixing coefficient during the night can significantly reduce the modeling 54 biases in diurnal PM2.5 and also the mean concentrations, particularly at the major cities of East China. It can also reduce the modeling sensitivity to the PBL vertical layer configurations. The 55 diurnal variation and injection height of anthropogenic emissions also play roles on simulating 56 57 diurnal PM_{2.5}, but the impact is relatively smaller than that from the PBL mixing. This study 58 underscores that more efforts are needed to improve the boundary mixing process of pollutants 59 in models with observations of PBL structure and mixing fluxes in addition to PBL height, in order to simulate reasonably the diurnal PM_{2.5} over East China. The diurnal variation and 60 61 injection height of anthropogenic emissions are also necessary to be included to simulate the diurnal PM2.5 over East China. 62

63

65 **1. Introduction**

66 The Yangtze River Delta (YRD) region of East China hosts the economic engine and a major portion of the Chinese population. During the past two decades, the rapid economic 67 growth has resulted in significant elevated surface air pollutants over East China, especially 68 69 particulate matter (PM), also called aerosols. Previous studies have indicated that exposure to 70 the high concentrations of $PM_{2.5}$ (fine particulate matter with aerodynamic diameter less than 71 2.5 µm) can cause many health issues such as lung cancer (LC), ischemic heart disease(IHD), 72 asthma, and nervous system breakdown (e.g., Seaton A et al., 1995; Davidson C I et al., 2005; 73 Pope III C A et al., 2006; Ho et al., 2018; Li T et al., 2018; Liu T et al., 2018). It has become 74 the fourth risk factor of deaths in China and 11.1% of all deaths are attributable to the ambient 75 elevated concentration of particulate matter (Gakidou et al., 2017). Besides the health impacts, 76 atmospheric aerosol can also influence the radiative energy budget of the Earth's system 77 through interacting with radiation, and serving as cloud condensation nuclei (CCN) and ice 78 nuclei (IN) and hence modifying cloud microphysics (e.g., Ackerman T P., 1977; Dickerson R R et al., 1997; Jacobson M. Z., 1998). 79

80 Many studies have investigated spatial and temporal variations of atmospheric aerosol 81 over China in last decades. The PM2.5 concentrations are higher in North China than in South 82 China. The highest surface PM_{2.5} concentrations appear in winter and the lowest in summer, and the highest and lowest surface PM_{2.5} concentration of a day often occurs in the evening and 83 afternoon, respectively (e.g., Gong et al., 2007; Fu et al., 2008; Hu et al., 2014; Wang ZF et al., 84 85 2014; Wang YG et al., 2014; Wang YJ et al., 2014; Geng et al., 2015; Xie et al., 2015; Zhang 86 and Cao, 2015; Zhang H et al., 2015). Moreover, modeling analysis can help understand the 87 chemical and physical processes affecting aerosol formation and evolution (e.g., Ying et al., 2009; Zhang et al., 2010; Liao et al., 2014; Wang YX et al., 2014; Wang YJ et al., 2014; Hu et 88 89 al., 2016; Li et al., 2016; Yang et al., 2016; Hu et al., 2017; Zhao B et al., 2017). Yang et al. 90 (2016) reproduced an increasing trend of winter PM2.5 concentrations averaged over East China 91 for 1985-2005 with the GEOS-Chem model, and found that the variations in anthropogenic 92 emissions dominated the increase of winter surface PM2.5 concentrations over East China and 93 the variations in meteorological fields also played an important role in influencing the decadal 94 increase in winter $PM_{2,5}$ concentrations over East China. Hu et al., (2017) investigated the 95 spatial and temporal distribution of secondary organic aerosol (SOA) in China in 2013 with 96 the WRF-CAMQ model and found that the formation of SOA from biogenic emissions was 97 significantly enhanced due to anthropogenic emissions.

98 Most of previous modeling studies focused on understanding the mechanisms driving PM 99 variation on daily or seasonal scales or/and evaluating the simulation of daily and monthly 100 mean PM concentrations over East China. Few studies evaluated the model performance in 101 simulating diurnal cycle of surface PM concentration and investigated the mechanisms 102 underneath. However, the model capability of capturing diurnal cycle of surface PM 103 concentration is critical for revealing mechanisms of PM formation and evolution and may also 104 affect simulating mean concentration. Some studies also found that diurnal variation of surface 105 PM concentration can affect the daily average radiative forcing (e.g., Arola A et al., 2013; 106 Kassianov E et al., 2013; Kuang Y et al., 2015; Wang Z et al., 2015; Song et al., 2018). Based 107 on the ground-based data collected in Hefei from 2007 to 2013, Wang Z et al. (2015) demonstrated that using daily averaged aerosol properties to retrieve the 24-h average direct 108 109 aerosol radiative forcing can have positive biases of up to 7.5 W m^{-2} for the cases. Arola et al. (2013) found that the aerosol optical depth (AOD) diurnal cycles have significant impacts on 110 the daily mean aerosol radiative forcing. 111

Previous studies have observed evident diurnal variations of surface PM over East China 112 (e.g., Gong et al., 2007; Gu et al., 2010; Pathak R K et al., 2011; Feng et al., 2014; Hu et al., 113 114 2014; Huang et al., 2014; Ma et al., 2014; Zhang and Cao, 2015; Chen et al., 2016; Tao et al., 115 2016; Zhao et al., 2016; Chen et al., 2017; Jia et al., 2017; Guo H et al., 2017; Guo J et al., 116 2017;). Zhang and Cao (2015) used a long-term dataset of surface PM_{2.5} concentration 117 measured at 190 cities of China, and found that the diurnal variation of the PM2.5-to-CO ratio consistently displayed a pronounced peak during the afternoon, reflecting a significant 118 119 contribution of secondary PM formation. Guo H et al. (2017) investigated the diurnal cycle of 120 PM_{2.5} in China with the observations obtained at 226 sites of China during the period of January 121 of 2013 to December of 2015 and found the surface PM2.5 concentration reached the maximum 122 in the morning over the YRD region.

123 Diurnal variation of surface PM concentration can be controlled by many factors including 124 emissions, chemical reactions, and meteorology (e.g., Wang et al., 2006; Huang et al., 2010; 125 Wang et al., 2010; Menut et al., 2012; Qi et al., 2012; Quan et al., 2013; Tiwari et al., 2013; Li et al., 2014; Pal et al., 2014; Sun et al., 2015; Zhang and Cao, 2015; RR Rodelas et al., 2019; 126 Xu et al., 2019). Wang et al. (2010) found that simulations with hourly emission inventory can 127 reproduce the diurnal variation patterns and magnitude of AOD better than simulations with 128 129 daily emission inventory. Xu et al. (2019) compared the diurnal cycles of aerosol species 130 between 2014 and 2016 observed by Aerodyne high-resolution aerosol mass spectrometer in

Beijing and found that the increase of secondary inorganic nitrate, sulfate, and ammonium
throughout the day in 2016 were mainly caused by the enhanced photochemical production.
With the dataset of PBL height derived from the space-borne and ground-based lidar, Su et al.
(2018) investigated the relationship between PBL height and surface PM concentrations across
China and found nonlinearly negative responses of PM to PBL height evolution over polluted
regions, especially when the PBL height is shallow and PM concentration is high.

137 Since very few studies evaluated the modeling performance of diurnal cycle of surface 138 PM concentration over East China and investigated the mechanisms underneath, this study 139 investigates the WRF-Chem (Weather Research and Forecasting model coupled with Chemistry) simulation of diurnal variation of PM2.5 over East China. WRF-Chem (Grell et al., 140 141 2005) is an online-coupled meteorology and chemistry model that simulates meteorological 142 fields and air pollutant concentrations simultaneously. It has been widely used for studying the 143 temporal and spatial variation of aerosols (e.g., Jiang et al., 2012; Zhou et al., 2014; Bei et al., 2016; Wang et al., 2016; Zhang et al., 2016; Zhong et al., 2016; Li et al., 2017; Zhao et al., 144 2017; Zhou et al., 2017; Liu S et al., 2018; Ni et al., 2018) and their meteorological and climatic 145 impacts over East China (e.g., Gong et al., 2007; Ding et al., 2013; Wu et al., 2013; Gao et al., 146 147 2014; Chen et al., 2014; Zhao et al., 2014; Zhang B et al., 2015; Zhang L et al., 2015; Huang et al., 2016; Liu et al., 2016; Petääet al., 2016; Zhao B et al., 2017). Most of the previous 148 149 modeling studies with WRF-Chem over China investigated the influencing factors on spatial 150 distribution and monthly or seasonal variation of PM. None of them focused on the performance of simulating diurnal variation of PM with WRF-Chem. 151

152 The study will examine the observed characteristics of diurnal variation of surface PM_{2.5} 153 concentration over the YRD region of East China in four seasons of 2018. The WRF-Chem 154 simulations are conducted for one month of each season over East China as shown in Fig 1a, and the simulated diurnal cycle of surface PM_{2.5} concentration will be evaluated through 155 156 comparing with hourly observations of surface PM2.5 concentration released by the Ministry of 157 Environmental Protection (MEP) of China for 190 stations over the YRD region of East China 158 in 2018. The model is also used to investigate the mechanisms driving the diurnal cycle of 159 surface PM_{2.5}. This study will focus on the impacts from meteorology and anthropogenic emissions on the diurnal variation of surface $PM_{2.5}$ concentration. For meteorology, we will 160 focus on the PBL mixing process that has been found largely controlling the diurnal variation 161 162 of surface pollutant concentrations (Liu M et al., 2018). For emissions, based on the findings of Wang et al. (2010) and Yang et al. (2019), the diurnal variation and injection height of 163 emission will be investigated. The rest of the paper is organized as follows. The detailed 164

- introduction of WRF-Chem model and numerical experiments, anthropogenic emissions, and
 observations will be presented in Section 2. The examination of simulated diurnal variation of
 surface PM_{2.5} concentrations and the impacts of PBL mixing and emission will be discussed in
 Section 3. The conclusions can be found in Section 4.
- 169
- 170 **2. Methodology**
- 171 2.1 Models and experiments
- 172 2.1.1 WRF-Chem

In this study, the version of WRF-Chem updated by University of Science and Technology 173 174 of China (USTC version of WRF-Chem) is used. This USTC version of WRF-Chem includes some additional capabilities such as the diagnosis of radiative forcing of aerosol species, land 175 surface coupled biogenic VOC emission, aerosol-snow interaction compared with the 176 177 publically released version (Zhao et al., 2013a,b, 2014, 2016; Hu et al., 2019). Particularly, in 178 order to understand the modeling mechanisms driving the diurnal variations of surface PM_{2.5} 179 concentration over East China, this study updates the USTC version of WRF-Chem to include 180 the diagnosis of contribution to surface PM_{2.5} concentration from individual process including 181 transport, emission, dry and wet deposition, PBL mixing, and chemical production/loss through 182 estimating the difference of surface PM_{2.5} concentration before and after individual process 183 during the simulation.

184 The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC, Zaveri and 185 Peter, 1999; Zaveri et al., 2008) and the CBM-Z (carbon bond mechanism) photochemical 186 mechanism (Zaveri and Peters, 1999) are used. The MOSAIC aerosol scheme includes physical 187 and chemical processes of nucleation, condensation, coagulation, aqueous phase chemistry, and water uptake by aerosols. All major aerosol components including sulfate, nitrate, 188 189 ammonium, black carbon, organic matter, sea salt, mineral dust, and other inorganics (OIN) are simulated in the model. Aerosol size distributions are represented by eight discrete size bins 190 191 through the bin approach (Fast et al., 2006). Dry deposition of aerosol mass and number is 192 simulated following the approach of Binkowski and Shankar (1995), which includes both 193 particle diffusion and gravitational effects. Wet removal of aerosols by grid resolved stratiform 194 clouds/precipitation includes in-cloud removal (rainout) and below-cloud removal (washout) 195 by impaction and interception, following Easter et al. (2004) and Chapman et al. (2009). In this 196 study, cloud-ice-borne aerosols are not explicitly treated in the model but the removal of 197 aerosols by the droplet freezing process is considered. Convective transport and wet removal

198 of aerosols by cumulus clouds follow Zhao et al. (2013a). Aerosol radiative feedback is coupled with the Rapid Radiative Transfer Model (RRTMG) (Mlawer et al., 1997; Lacono et al., 2000) 199 200 for both SW and LW radiation as implemented by Zhao et al. (2011). The optical properties 201 and direct radiative forcing of individual aerosol species in the atmosphere are diagnosed 202 following the methodology described in Zhao et al. (2013b). A detailed description of the 203 computation of aerosol optical properties in WRF-Chem can be found in Fast et al. (2006) and 204 Barnard et al. (2010). Aerosol-cloud interactions were included in the model by Gustafson et 205 al. (2007) for calculating the activation and re-suspension between dry aerosols and cloud 206 droplets.

207

208 2.1.2 Numerical experiments

209 In this study, WRF-Chem is conducted with two nested domains (one-way nesting) in one 210 month of each season of 2018 (i.e., January, April, July, October of 2018). The outer quasiglobal domain with 360×145 grid cells (180 W~180 E,67.5 S~77.5 N) at the 1 ×1 °horizontal 211 212 resolution is used to provide the chemical boundary to the inner domain with 112×105 grid 213 cells (109.0 E~124.9 E, 24.0 N~38.9 N) at the horizontal resolution of 15 km over East China 214 covering the entire YRD region as shown in Figure 1a. More details about the quasi-global WRF-Chem simulation can be found in Zhao et al. (2013a) and Hu et al. (2016). To better 215 216 resolve the PBL structure and mixing and examine the modeling sensitivity to vertical 217 configuration within PBL, two experiments (CTL1 and CTL2, Table 1) are configured with 40 218 vertical layers but have different distributions (as shown Fig. 1b). One configuration (L1) has 219 roughly 20 layers below 2 km above the ground, and the other has about 10 layers below 2 km 220 (Fig. 1b). In both CTL1 and CTL2, MYNN2 PBL scheme (Nakanishi and Niino, 2006) is used. 221 To demonstrate the modeling sensitivity to PBL parameterizations, the experiment CTL3 is 222 conducted as the way similar to CTL2 but with the YSU PBL scheme (Hong et al., 2006). Two 223 additional sensitivity experiments (EXP1 and EXP2, Table 1) are also conducted 224 corresponding to the experiments CTL1 and CTL2, respectively, except that the PBL mixing 225 coefficient is modified (see details in Section 3.2.2). All these WRF-Chem experiments use the 226 Morrison two-moment cloud microphysics (Morrison et al., 2009), Kain-Fritsch convective 227 scheme (Kain et al., 2004), CLM land surface scheme, and RRTMG longwave and shortwave 228 radiation schemes. The meteorological initial and lateral boundary conditions are derived from 229 the NCEP Final reanalysis data with $1 \times 1^{\circ}$ degree resolution and 6-hour temporal resolution. 230 The modeled u component and v component wind and atmospheric temperature are nudged

- 231 towards the reanalysis data only to the layers above the PBL with nudging coefficients of 3×10^{-10}
- 4 s⁻¹ with a nudging timescale of 6-hour (Stauffer and Seaman, 1990; Seaman et al., 1995).
- 233
- 234 2.1.3 Emissions

235 Anthropogenic emissions for the outer quasi-global simulation are obtained from the 236 Hemispheric Transport of Air Pollution version-2 (HTAPv2) at 0.1 °×0.1 °horizontal resolution 237 and a monthly temporal resolution for year 2010 (Janssens-Maenhout et al., 2015), except that 238 emissions over China within the domains are from the Multi-resolution Emission Inventory for 239 China (MEIC) at 0.1×0.1 horizontal resolution for 2015 (Li M et al., 2017), which is also 240 used for the inner domain simulation over East China. Figure 1a shows the spatial distributions 241 of emissions of primary $PM_{2.5}$, NO_x , and SO_2 over East China. The default anthropogenic emission inventories assume no diurnal variation of emissions and that all emissions are near 242 243 the surface (e.g., first model layer). Since diurnal variation of emissions and injection height 244 of power plant emissions may have impacts on diurnal variation of surface pollutants, the 245 experiments discussed above apply the diurnal profiles of anthropogenic emissions from five individual sector (i.e., agriculture, industry, transport, energy, and residential) following 246 247 Olivier et al. (2003) and Wang et al. (2005) as shown in Fig. 1c and vertical distributions of 248 anthropogenic power plant emissions following Wang et al. (2010) as shown in Table 2. As 249 shown in Fig. 1c, emissions from all sectors show peak values during the daytime, and the 250 diurnal variations from agriculture, residential, and transportation are much stronger than those from industry and power plant. The emissions from power plant are distributed from the bottom 251 252 to a height of ~900 m with more than 90% below 500 m. Two sensitivity experiments, 253 EXP1 E1 and EXP1 E2, are conducted as the way similar to EXP1 except that EXP1 E1 254 assumes no diurnal variation of anthropogenic emissions and EXP1 E2 assumes all power 255 plant emissions are placed near the surface (i.e., the first model layer). Comparing EXP1 with 256 EXP1 E1 and EXP1 E2 can examine the impact of diurnal variation and injection height of anthropogenic emissions on diurnal cycle of surface PM2.5, respectively. All these experiments 257 258 are summarized in Table 1. Biomass burning emissions are obtained from the Fire Inventory 259 from NCAR (FINN) with hourly temporal resolution and 1 km horizontal resolution 260 (Wiedinmyer et al., 2011), and are vertically distributed following the injection heights 261 suggested by Dentener et al. (2006) from the Aerosol Comparison between Observations and 262 Models (AeroCom) project. Sea-salt emission follows Zhao et al. (2013a), which includes 263 correction of particles with radius less than 0.2 µm (Gong, 2003) and dependence of sea-salt

emission on sea surface temperature (Jaegl éet al., 2011). The vertical dust fluxes are calculated
with the GOCART dust emission scheme (Ginoux et al., 2001), and the emitted dust particles
are distributed into the MOSAIC aerosol size bins following a theoretical expression based on
the physics of scale-invariant fragmentation of brittle materials derived by Kok (2011). More
details about the dust emission scheme coupled with MOSAIC aerosol scheme in WRF-Chem
can be found in Zhao et al. (2010, 2013a).

270

271 2.2 Observations

272 The ground observations of hourly surface PM2.5 mass concentration in January, April, 273 July, and October of 2018 are obtained from the website of the Ministry of Environmental 274 Protection of China (MEP of China). Since this study focuses on the YRD region of East China, 275 190 stations over East China are selected for analysis. The locations of these 190 stations are 276 shown in Fig. 1a within the black box (116.0 E~122.5 E,29.0 N~33.0 N). Besides regional 277 average analysis, four cities (Fig. 1a) as the Center (Shanghai, 121.45 E and 31.21 N) and sub-278 Center (Nanjing, 118.78 E and 32.06 N; Hefei, 117.25 E and 31.85 N; Hangzhou, 120.08 E 279 and 30.21 N) of the YRD city cluster are also selected for further analysis at urban areas.

280

281 **3. Results**

282 **3.1 Modeling diurnal cycle of surface PM_{2.5} concentration**

283 In order to investigate the diurnal cycle of surface PM_{2.5} concentration, this study defines 284 an index to better show the diurnal variation. The diurnal index (DI) is defined as the value of 285 each hour divided by the minimum value within 24-hour on monthly average. The peak DI 286 within 24-hour represents the amplitude of diurnal variation. Figure 2 shows the diurnal index of surface PM_{2.5} concentration within 24-hour averaged over the YRD region of East China (as 287 288 shown as the black box in Fig. 1a) for January, April, July, October of 2018 from the WRF-Chem experiments and observations. The experiment CTL1 uses the MYNN PBL scheme and 289 290 finer boundary layer configuration (L1 in Fig. 1b). The simulation results are 3-hourly and 291 sampled at the observational sites as shown in Fig. 1a. On regional average, the observed 292 variation of DI is the weakest in winter with the peak value around 1.2 among the four seasons. 293 The observed DI reaches the maximum of 1.5 in autumn. In spring and autumn, the observed 294 diurnal variation of DI is similar, showing two peaks in the morning and night, respectively, 295 and reaching the minimum in the afternoon, which is consistent with previous findings with 296 observations over East China (e.g., Zhang and Cao., 2015; Liu et al., 2016; Guo et al., 2017). In

297 summer, different from other seasons, the observed diurnal variation of DI shows the single 298 peak around 1.4 near the noon time. The CTL1 experiment can generally reproduce two peaks 299 in spring and autumn, however, the CTL1 simulation overestimates the observed peak DI in 300 the two seasons, particularly in autumn. The experiment generally captures the seasonality of 301 DI of surface PM_{2.5} concentration that is higher DI in spring and autumn and the weakest DI in 302 winter, except that in summer the experiment significantly overestimates the DI during the 303 night and produces opposite diurnal pattern with the minimum DI near the noon time. The 304 spatial distributions of DI over East China are also generally consistent between observations 305 and simulations and show similar seasonality (Figure S1 in the supporting material). The area with higher surface PM_{2.5} concentration generally has higher DI (Figure S2 in the supporting 306 307 material), particularly from the simulation.

308 Therefore, the DI distribution at the four cities as the Center (Shanghai) and sub-Center 309 (Nanjing, Hefei, Hangzhou) of the YRD city cluster in East China (as shown in Fig. 1a) are 310 further analyzed. Figure 3 shows the diurnal index of surface PM_{2.5} concentration within 24hour averaged over the four cities for January, April, July, October of 2018 from the WRF-311 Chem experiments and observations. The observed diurnal variation of DI in these four cities 312 313 are consistent with that on regional average of East China. The diurnal variation of DI is more 314 evident in the two inland cities (Hefei and Nanjing) than the two coastal cities (Hangzhou and 315 Shanghai). Consistent with the results based on regional average, the CTL1 experiment can 316 generally capture the diurnal variation of DI of surface PM_{2.5} in the four cities, but overestimates the DI in the night, particularly in spring and autumn. In summer, again, the 317 318 CTL1 significantly overestimates the DI during the night and produces the opposite diurnal 319 pattern compared to observations. In general, the CTL1 produces even higher DI during the 320 night in the four cities than regional average, which results in larger diurnal amplitudes in the 321 four cities than regional average. The CTL1 can generally simulate stronger diurnal variation 322 in the two inland cities than in the two coastal cities.

323 The analysis above for both regional average and city average indicates that the CTL1 324 simulation has high positive biases of DI during the night. In order to understand the modeling 325 biases and the mechanisms driving the simulated diurnal variations of surface PM_{2.5} concentration over East China, the contribution to diurnal variation of surface PM2.5 326 327 concentration from individual process including transport, emission, dry and wet deposition, 328 mixing, and chemical production/loss is estimated. The contribution is calculated as the 329 difference of surface PM_{2.5} concentration before and after individual process during the 330 simulation. Figure 4 shows the contribution of individual process to the variation of surface

PM_{2.5} concentration every 3-hour in Hefei from the WRF-Chem experiments averaged for 331 332 January, April, July, and October of 2018. The 3-hourly tendency of surface PM_{2.5} 333 concentration is also shown. The contributions and tendencies are divided by monthly mean 334 surface PM_{2.5} concentration for each month. The results for the other three cities (Nanjing, 335 Hangzhou, Shanghai) are similar to that of Hefei and are shown in the supporting material (Figure S3a-c). Process contribution analysis is verified by comparing the variations of surface 336 337 $PM_{2.5}$ concentration with the sum of the contribution from each individual process. As shown 338 in Figure S4, the sum contributions of all processes are consistent with the variations in surface 339 PM_{2.5} concentration following the principle of mass balance.

340 In Fig. 4, positive value denotes relative increase of surface PM_{2.5} concentration and 341 negative value denotes relative decrease. From the CTL1 experiment, the contributions from 342 emission and chemistry are positive through the day, while the contributions from transport, 343 PBL mixing, wet and dry deposition are negative through the day. The CTL1 simulates the 344 largest variation of tendency in summer and the smallest variation in winter. The tendency is negative from the morning to the afternoon, resulting the simulated minimum surface PM_{2.5} 345 346 concentration in the afternoon in all seasons, which is consistent with the result shown in Fig. 347 3. It is evident that emission, PBL mixing, and transport are the three main processes 348 controlling the diurnal variation of surface PM_{2.5} concentration, and emission and PBL mixing 349 are the dominant two. Emission increases the surface PM_{2.5} concentration and reaches the 350 maximum near the noon time, while PBL mixing reduces the surface PM_{2.5} concentration and 351 also reaches the maximum reduction near the noon time. The combined effect of emission and 352 PBL mixing is reflected as the overall tendency. Therefore, PBL mixing is the determinant 353 process leading to the simulated minimum DI near the noon time and higher DI during the 354 night. To further demonstrate the contribution of each $PM_{2.5}$ composition to the diurnal variation of surface PM_{2.5} concentration, Figure 5 shows the diurnal variation of surface 355 356 concentration of each PM_{2.5} composition in Hefei from the WRF-Chem experiments averaged 357 for January, April, July, and October of 2018. The diurnal variations of surface concentrations 358 of OM, BC, and OIN are larger than other components of PM2.5, showing evident higher 359 concentration during the night and minimum near the noon time in all seasons except winter. 360 The sum of OM and OIN contribute to more than half of surface PM_{2.5} concentration. Therefore, it suggests that the PBL mixing of the primary PM_{2.5} determines the simulated diurnal variation 361 362 of surface PM_{2.5} concentration. The results for the other three cities (Nanjing, Hangzhou, 363 Shanghai) are similar to that of Hefei and are shown in the supporting material (Figure S5a-c). 364

365 3.2 Sensitivity to PBL mixing

366 3.2.1 Sensitivity to the PBL configuration

367 As discussed above, the PBL mixing is very important for modeling diurnal variation 368 of surface PM_{2.5} concentration, and it may be affected by PBL parameterizations and vertical 369 layer configuration within the PBL. Therefore, two experiments, CTL2 and CTL3, are conducted to examine the sensitivity of simulated diurnal variation of surface PM_{2.5} 370 371 concentration to different PBL configurations. The CTL2 uses the MYNN PBL scheme as the 372 CTL1 but is configured with different vertical layer distribution (L2) as shown in Fig. 1b, in 373 which less vertical layers are put within the PBL as described in Section 2.2. The CTL3 uses the YSU PBL scheme and is configured with the L2 vertical layer distribution as the CTL2. As 374 375 shown in Fig. 2, on regional average, the CTL2 and CTL3 generally simulate similar diurnal 376 and seasonal patterns as that by the CTL1 with the minimum DI near the noon time and the 377 peak DI during the night. The CTL2 simulates lower DI than the CTL1 during the night in all 378 seasons. This indicates that the model with finer vertical resolution within the PBL, which is 379 supposed to better resolve the PBL structure, produces higher positive biases of DI. The CTL3 simulates similar diurnal variation of DI as the CTL2 but overestimate the DI during the night 380 381 to some extent, particularly in summer, which indicates the model with the YSU PBL scheme 382 produces higher positive biases of DI during the night compared to the one with the MYNN 383 PBL scheme. In the four cities as shown in Fig. 3, the CTL2 and CTL3 also simulate similar 384 diurnal and seasonal patterns as that by the CTL1. It is also interesting to note that the 385 difference of DI between CTL2 and CTL1 are larger than that between CTL3 and CTL2, which 386 indicate that the modeling sensitivity of DI to the vertical layer configuration within the PBL 387 is even greater than that to the PBL scheme. Overall, all these three WRF-Chem experiments 388 produce similar positive biases of DI during the night compared to the observations in all 389 seasons over the YRD region of East China, particularly in cities. This is consistent with 390 previous findings about the simulated positive biases of diurnal variation of surface PM_{2.5} 391 concentration over East China (e.g., Liu M et al., 2018). The changes of PBL schemes and 392 vertical configurations within the PBL can affect the simulated DI but cannot improve the 393 simulations to reproduce the observations.

In order to better understand the modeling sensitivity of DI to the PBL configuration, Fig. 4 and 5 also shows the simulated results for the city of Hefei from the CTL2 and CTL3. Similar as CTL1, the results from CTL2 and CTL3 also show that emission, PBL mixing, and transport are the three main processes controlling the diurnal variation of surface PM_{2.5} concentration, and emission and PBL mixing are the dominant two (Fig. 4). Since the number

399	of vertical layer within the PBL in CTL2 and CTL3 is much less than that in CTL1, the
400	thickness of first model layer in CTL2 and CTL3 is about a factor 2 of that in CTL1. With the
401	same emission flux, CTL2 and CTL3 simulate much smaller contribution from emission to the
402	surface $PM_{2.5}$ concentration than does CTL1. Correspondingly, the contribution from PBL
403	mixing to the surface $PM_{2.5}$ concentration in CTL2 and CTL3 is also lower than that in CTL1.
404	The combined effect of emission and PBL mixing results in weaker diurnal variation of surface
405	$PM_{2.5}$ concentration in CTL2 and CTL3 than that in CTL1, as shown by the diurnal variation
406	of overall tendency of surface $PM_{2.5}\ concentration.\ CTL3$ with the YSU PBL scheme simulates
407	stronger diurnal variation of surface $\text{PM}_{2.5}$ concentration than does the CTL2 with the MYNN
408	PBL scheme, primarily due to its larger diurnal variation of PBL mixing. With less contribution
409	from emission to the surface $PM_{2.5}$ concentration, CTL2 and CTL3 simulate less primary $PM_{2.5}$
410	(OIN, OM, BC) than does CTL1 (Fig. 5), particularly during the night when the PBL mixing
411	is weak. This leads to the weaker diurnal variation of total surface $PM_{2.5}concentration$ in CTL2
412	and CTL3 as discussed above. The higher DI during the night in CTL3 than CTL2 can also be
413	explained by the higher primary $PM_{2.5}$ during the night due to weaker PBL mixing.

414

415 3.2.2 Sensitivity to the PBL mixing coefficient

416 The results discussed above suggest that, the WRF-Chem simulated diurnal variation of 417 surface PM_{2.5} concentration over East China is largely controlled by the PBL mixing process, 418 and is sensitive to the PBL scheme and vertical layer configuration within the PBL. However, the increase of number of vertical layer within the PBL and use of different PBL schemes 419 420 cannot reduce the modeling biases in diurnal variation of surface PM_{2.5} concentration. Many 421 previous studies investigated the PBL mixing of pollutants through establishing the relationship between surface pollutant concentration and PBL height. However, it is 422 423 noteworthy that in most atmospheric models, the mixing of pollutants within the PBL is treated 424 either as full mixing within the PBL height (i.e., uniformly distributed within the PBL height) 425 or as calculated based on the mixing coefficient diagnosed from the PBL scheme. The former 426 method represents the strongest PBL mixing and the surface concentration can be largely 427 influenced by the PBL height. However, the latter one means that the pollutant mixing does 428 not depend explicitly on PBL height.

In WRF-Chem, the PBL mixing of pollutants is treated with the second approach. In order
to further examine the simulated PBL mixing process in this study, Figure 6 shows the diurnal
variation of PBL heights and PBL mixing coefficients below PBL height in Hefei in January,
April, July, and October of 2018 from the WRF-Chem experiments CTL1, CTL2, and CTL3.

433 The black line represents the PBL height while the contour shading represents the PBL mixing 434 coefficients within the PBL height. First of all, the PBL heights simulated from the three experiments all show evident diurnal variation with the maximum in the daytime and the 435 436 minimum during the night. The simulated PBL heights from CTL1 and CTL2 with the same 437 PBL scheme (MYNN) show very similar diurnal pattern, indicating the vertical layer configuration has small impact on modeling PBL height. Both experiments simulate the largest 438 439 diurnal variation of PBL height in summer with a changing factor of ~ 10 from ~ 2 km in the 440 afternoon to ~200 m in the early morning, and the smallest diurnal variation of PBL height in 441 winter with a changing factor of 2 from ~700 m in the afternoon to ~350 m in the early morning. It should be noted that the PBL mixing coefficients within the PBL also exhibit evident diurnal 442 443 variation with a changing factor of ~ 1000 and ~ 50 in summer and winter, respectively, which 444 is much larger than that of the PBL height in all seasons. The CTL3 simulation with the YSU PBL scheme also show that the diurnal variation of PBL mixing coefficient is much larger than 445 that of PBL height. The difference between CTL2 and CTL3 is consistent with the analysis 446 about the simulated diurnal variation of surface PM2.5 concentration, further demonstrating that 447 the WRF-Chem simulated diurnal variation of surface PM_{2.5} concentration is determined by 448 449 the PBL mixing coefficient instead of PBL height. For example, in autumn the PBL height 450 during the night is lower in CTL3 than in CTL2, while the DI during the night is lower in CTL3 451 than in CLT2 (Fig. 3) due to the higher PBL mixing coefficient during the night in CTL3 than 452 in CTL2. More WRF experiments with different PBL schemes are conducted and all show similar results that the diurnal variation of PBL mixing coefficient is much stronger than that 453 454 of PBL height (not shown).

455 With relatively large values of PBL mixing coefficient during the daytime, the emitted 456 pollutants can be mixed up roughly reaching the layer of PBL height. However, weak PBL mixing coefficient during the night results in that the emitted PM2.5 and its precursors will stay 457 458 near the surface (i.e., within the first layer of model) during the night and cannot be mixed up 459 reaching the PBL height (Fig. S6 in the supporting material). This leads to the large difference of DI between CTL1 and CTL2 with different thickness of first model layer during the night 460 461 although they simulate similar PBL height. The comparison between simulations and observations (Fig. 2 and 3) suggests the positive modeling biases of DI during the night may 462 be partly due to the underestimation of the PBL mixing during the night. To examine the 463 464 sensitivity of simulated DI to the PBL mixing coefficient, the sensitivity experiments, EXP1 and EXP2, are conducted corresponding to CTL1 and CTL2, respectively, through setting the 465 lower limit of PBL mixing coefficient from 0.1 m²/s (default in the publically released version 466

of WRF-Chem) to 5 m²/s within the PBL. Figure 7 shows the simulated PBL height and mixing 467 coefficients from the two sensitivity experiments, EXP1 and EXP2, in January, April, July, and 468 October of 2018 in Hefei. It shows that the PBL mixing coefficient increases during the night 469 470 within the PBL compared to the results shown in Fig. 6, while the values during the daytime 471 remain almost the same. The difference of simulated surface PM_{2.5} between CTL1 and EXP1 is relatively small during the daytime, but significant during the night, which is due to that 472 473 EXP1 can mix up the surface $PM_{2.5}$ to the PBL height during the night (Fig. S6). It is noteworthy that the lower limit parameter of 5 m^2/s is entirely empirical. It is selected to 474 475 represent the moderate mixing strength between the full PBL mixing and no PBL mixing. A 476 few other values such as 1 m²/s and 10 m²/s are also tested. The results do not change the 477 conclusion found in this study and therefore are not shown.

478 The change of PBL mixing coefficient during the night can significantly affect the diurnal 479 variation of PBL mixing. Figure 8 shows the contribution of individual process to the variation 480 of surface PM_{2.5} concentration every 3-hour in Hefei simulated by EXP1 and EXP2 averaged for January, April, July, and October of 2018. The 3-hourly tendency of surface PM_{2.5} 481 concentration is also shown. Same as Fig. 4, the contributions and tendencies are divided by 482 483 monthly mean surface PM_{2.5} concentration for each month. The results for the other three cities 484 (Nanjing, Hangzhou, Shanghai) are similar to that of Hefei and are shown in the supporting 485 material (Figure S7a-c). Compared to the results from CTL1 and CTL2 shown in Fig. 4, it is 486 evident that the diurnal variation of tendency of surface PM_{2.5} concentration is significantly reduced in all seasons. This is mainly resulted from the significantly reduced diurnal variation 487 488 of PBL mixing contribution. Specifically, the PBL mixing contribution during the night is 489 increased. Figure 9 shows the diurnal variation of surface concentration of each PM_{2.5} 490 composition in Hefei simulated by the EXP1 and EXP2 averaged for January, April, July, and October of 2018. The diurnal variations of surface concentrations of OM, BC, and OIN are 491 492 significantly reduced primarily due to their reduced concentration during the night in EXP1 493 and EXP2, compared to CTL1 and CTL2 (Fig. 5). The results for the other three cities (Nanjing, 494 Hangzhou, Shanghai) are similar to that of Hefei and are shown in the supporting material 495 (Figure S8a-c).

The change of PBL mixing and diurnal variation of primary PM_{2.5} near the surface turn out different DI. Figure 10 shows the diurnal variation of DI of surface PM_{2.5} averaged over the YRD region of East China for January, April, July, and October of 2018 from the observations and the experiments CTL1, CTL2, EXP1, and EXP2. In general, the simulated DI are reduced significantly during the night in EXP1 and EXP2 much more consistent with

501 the observations compared to the ones in CTL1 and CTL2. In spring, the EXP1 and EXP2 502 slightly underestimate DI during night. Figure 11 shows the diurnal variation of DI averaged 503 over the four cities for January, April, July, October of 2018 from the observations and the 504 experiments CTL1, CTL2, EXP1, and EXP2. As discussed above the diurnal variation of DI is 505 much stronger in cities with relatively more emissions. The simulated DI is also more sensitive 506 to the change of PBL mixing coefficient in these four cities compared to that on regional 507 average. The EXP1 and EXP2 produce much more consistent DI with the observations in the 508 four cities than do CTL1 and CTL2 in all seasons. It is also noteworthy that the difference 509 between EXP1 and EXP2 and that between CTL1 and CTL2 is reduced both on city average and regional average, which indicates that the enhanced PBL exchange coefficient during the 510 511 night help reduce the modeling sensitivity to the vertical layer configuration. The analysis 512 above suggests that the simulated PBL mixing during the night in the publically-released WRF-513 Chem may be too weak.

514 Comparing the simulated surface concentrations of PM_{2.5} components between CTL1 (Fig. 5) and EXP1 (Fig. 9), it can be found that the daily average surface PM_{2.5} mass concentration 515 516 should also be reduced when the diurnal variation is reduced due to the reduction of nighttime 517 surface PM_{2.5} concentration. Figure 12 shows the comparison of monthly mean surface PM_{2.5} 518 concentration between the observations and the simulations from CTL1 and EXP1 at each 519 observation site over the YRD region of East China for January, April, July, and October of 520 2018. In all seasons, the CTL1 significantly overestimates the observed surface PM_{2.5} 521 concentration with the normalized mean biases (NMB) of 22% (winter) - 109% (summer) on 522 regional average. The EXP1 reduces the NMB to 7% (winter) - 38% (summer) on regional 523 average. In CTL1, the NMB of simulation exceeds 50% at 20%, 35%, 65%, and 60% of 524 observational sites over the YRD region of East China in January, April, July, and October, respectively, which reduces to 0%, 10%, 35%, and 20% of all sites in EXP1. In addition, the 525 526 EXP1 also increases the spatial correlation between observations and simulated results in all 527 seasons (Fig. 12), although with the improvement of modeling diurnal variation the EXP1 still 528 cannot fully capture the observed spatial variability of surface PM2.5 concentration among the 529 observational sites. This may be related to the biases in spatial distributions of emission and 530 model processes contributed to the spatial variability of surface PM_{2.5} concentration, which 531 deserves further investigation in future.

532

533 **3.3 Impacts from emission distributions**

534 3.3.1 Impacts from emission diurnal variability

535 Besides the meteorology such as PBL mixing as discussed above, the diurnal variation of 536 emissions may also play an important role in determining the DI of surface PM_{2.5} concentration. 537 One sensitivity experiment, EXP1 E1, without diurnal variation of anthropogenic emissions 538 (Fig. 1b) is conducted. Figure 13 shows the spatial distribution of the difference in maximum 539 DI between EXP1 and EXP1_E1 over East China. As removing diurnal variation of emissions will lead to more emissions during the night and thus increase the DI during the night over 540 541 polluted area, which generally results in larger maximum DI. Therefore, EXP1 has lower 542 maximum DI than EXP1_E1 over most regions of East China in seasons other than winter. 543 EXP1 could have slightly larger maximum DI in winter when the diurnal variation of DI is 544 relatively small (Fig. 2 and 3) and over the relatively clean region (Fig. 1a) in summer. Figure 545 14 shows the diurnal index of surface PM_{2.5} concentration within 24-hour averaged over the 546 four cities for January, April, July, and October of 2018 from observations and the EXP1 and 547 EXP1_E1 experiments. In general, EXP1 shows lower DI than EXP1_E1 during the night, and 548 therefore has smaller diurnal variation of DI in four cities. The largest difference between EXP1 549 and EXP1 E1 in four cities exists in summer and the smallest is in winter. Comparing to the impacts from PBL mixing as shown in Fig. 11, the reduction of diurnal variation of DI by 550 551 adding diurnal variation of anthropogenic emissions is much smaller.

552 Fig. 13 shows that EXP1 with diurnal variation of emissions could simulate slightly larger 553 diurnal variation of DI over the relatively clean region than EXP1_E1 in winter and summer. 554 The higher DI in EXP1 than EXP1_E1 is primarily in the afternoon and evening (Fig. S9 in 555 the supporting material). One grid over south Anhui is selected for analysis of contributions 556 from different processes in the model to the diurnal variation of surface PM_{2.5} concentration 557 from the experiments EXP1 and EXP1_E1 (Fig. 15). Different from the process contributions 558 over the relatively polluted region (Fig. 8), the contribution from direct local emission to the 559 surface PM_{2.5} concentration is relatively small over the clean region. Instead, the contributions 560 from chemistry, dry deposition, PBL mixing, and transport dominate the diurnal variation of 561 surface PM_{2.5} concentration. The PBL mixing could increase the surface PM_{2.5} concentration during the daytime because of mixing down the pollutants transported from polluted regions 562 563 above the surface. The diurnal change of surface $PM_{2.5}$ concentration between EXP1 and EXP1 E1 is very similar with slightly difference that results in their slight difference in DI in 564 the afternoon and night. 565

566

567 3.3.2 Impacts from emission injection height

Previous studies suggested that the injection height of emissions from power plants may 568 569 also affect the diurnal cycle of surface pollutant concentration, particularly for SO₂ (e.g., Wang 570 et al.,2010; Lin et al.,2012; Qi et al.,2012; Xu et al.,2014). Therefore, one sensitivity 571 experiment, EXP1_E2, is conducted with setting the anthropogenic emissions placed only in 572 the first layer of model. Figure 16 shows the spatial distribution of the difference in maximum DI between EXP1 and EXP1 E2 over East China. Over most areas of East China, EXP1 573 574 simulates lower maximum DI than EXP1 E2, and the difference is primarily in spring and 575 summer. The impact of injection height is negligible in winter. The distribution of impacts 576 correlates highly with the distribution of power plant locations. The reduction of DI of surface 577 SO₂ concentration in EXP1 compared to EXP1 E2 is mainly due to more emissions are placed 578 above the PBL during the night (Fig. S10 in the supporting material). As shown in Table 2, 579 most of power plant emissions are placed below 500 m in EXP1. The larger impact in summer 580 than in winter is mainly due to the higher PBL height during the night in winter (Fig. 7). 581 Therefore, emissions are still placed within the PBL even with the injection height, which results in the small difference of DI of surface SO₂ concentration between EXP1 and EXP1 E2. 582 For surface PM_{2.5} concentration, the impact of emission injection height is even smaller and 583 584 only distinguishable in summer (Fig. S11 in the supporting material). Overall, impact from the 585 injection height of emission on the diurnal variation of surface PM_{2.5} concentration is much 586 smaller than that from PBL mixing.

587

588 4. Summary and discussion

In this study, the observed characteristics of diurnal variation of surface PM_{2.5} 589 590 concentration over the YRD region of East China in four seasons of 2018 is examined based 591 on the hourly surface observations at 190 stations of the region. On regional average, the 592 observed diurnal variation is the weakest in winter and the strongest in autumn. In spring and 593 autumn, the observed patterns of diurnal variation are similar, showing the minimum surface 594 PM_{2.5} concentration in the afternoon, consistent with previous studies (e.g., Zhang and Cao et al.,2015; Liu et al.,2016; Guo et al.,2017). In summer, different from other seasons, the 595 observed diurnal variation shows the maximum surface PM_{2.5} concentration near the noon time. 596

597 The WRF-Chem experiments are conducted over East China and the simulated diurnal 598 variations of surface PM_{2.5} concentration are compared with the observations. The model 599 generally captures the observed seasonality of diurnal variation of surface PM_{2.5} concentration, 600 except that in summer the model significantly overestimates the diurnal peak during the night

601 and produces opposite diurnal pattern with the minimum concentration near the noon time. The 602 model can generally reproduce the patterns with the minimum noontime concentration in 603 spring and autumn, but overestimates the observed nighttime peaks, particularly in autumn. 604 The modeling biases and the mechanisms driving the diurnal variation of surface PM_{2.5} 605 concentration in four seasons are further investigated. Emission and PBL mixing are found to 606 be the two dominant processes controlling the diurnal variation of surface PM_{2.5} concentration 607 over the polluted areas, and the PBL mixing leads to the simulated diurnal pattern of surface 608 PM_{2.5} concentration. More specifically, the simulations suggest that the PBL mixing of the 609 primary PM_{2.5} determines the modelled diurnal variation of surface PM_{2.5} concentration. Although the observation of PM_{2.5} components is not available to evaluate the diurnal variation 610 611 of primary PM_{2.5}, the diurnal variation of surface mixing ratio of CO that is normally used to 612 represent the primary pollutant supports the findings (Fig. S12 in the supporting material).

613 The modeling results are found sensitive to the PBL schemes and the vertical 614 configuration (i.e., the number of model layers within PBL) of simulations. However, none of the PBL schemes in WRF-Chem can reduce the modeling biases in diurnal variation of 615 surface PM_{2.5} concentration. Contrary to the intuition, more model layers within PBL worsen 616 617 the model performance, which is mainly due to that more layers within PBL makes the first 618 model layer thinner and enlarges the contribution from emission if PBL mixing is not 619 efficient. The analysis indicates that the PBL mixing coefficient instead of the PBL height 620 controls the PBL mixing in WRF-Chem, particularly during the night. Increasing the lower 621 limit of PBL mixing coefficient within the PBL can significantly reduce the modeling biases 622 in diurnal variation of surface PM_{2.5} concentration, primarily during the night. In addition, it 623 can also reduce the modeling sensitivity to the model vertical configuration. The model 624 performance of daily mean surface PM_{2.5} concentration is also largely improved when the biases of diurnal variation are reduced. The diurnal variation of anthropogenic emissions and 625 626 injection height of power plant emissions can affect the diurnal cycle of surface PM_{2.5} 627 concentration to some extent, but the impact is much smaller than that of PBL mixing.

This study highlights the importance of modeling PBL mixing coefficient within PBL in models like WRF-Chem that simulates the PBL mixing process based on the mixing coefficient instead of PBL height. Some studies found that other models also overestimated the diurnal variation of observed surface PM_{2.5} concentration over East China (e.g., Cai et al.,2011; Liu M et al.,2018). Our finding suggests that those models may also have the problems in modeling PBL mixing during the night. Many of previous modeling and observation studies focus on investigating the variation of PBL height and its interaction

with aerosol concentration (e.g., Sawyer et al., 2015; Ding et al, 2016; Li et al, 2017; Song 635 636 et al., 2018; Su et al., 2018). However, this study reveals that the PBL mixing flux is more critical than PBL height in terms of understanding the mixing of pollutants within PBL, 637 638 particularly during the night, which can not only significantly affect the diurnal variation but 639 also the daily mean of surface pollutant concentration. The increase of PBL mixing during the night reduces the modeling biases, which may suggest that the simulated PBL mixing 640 641 during the night in WRF-Chem is too weak. One possible reason may be due to urban heat 642 island effect that is not accounted in this study, because the observation sites are mostly at 643 urban or sub-urban areas. The test simulations with the current version of WRF-Chem using Noah land surface model with urban effect can increase the nighttime PBL mixing 644 coefficient from 0.1 m^2/s to 1-10 m^2/s during some cases at urban areas, but the results are 645 646 sensitive to the urban schemes (not shown), which deserves investigation in future. Another 647 suggestion is that the PBL mixing of pollutants may not be able to follow directly the mixing coefficient diagnosed by PBL parameterization for meteorology, which deserves further 648 investigation. The improvement of modeling PBL height is not enough for understanding 649 the PBL mixing of pollutants. This suggests that the understanding of PBL structure and 650 651 detailed mixing process are needed. Besides the observation or retrieval of PBL height, observations of PBL characteristics are needed. 652

653 Although the sensitivity adjustment of PBL mixing coefficient during the night can 654 largely reduce the modeling biases in diurnal variation of surface PM_{2.5} concentration, one evident deficiency is that the model produces opposite diurnal pattern compared with 655 656 observations in summer. It needs to be noted that the WRF-Chem simulations conducted in 657 this study do not consider the SOA production that still has large uncertainties in 658 mechanisms. One sensitivity experiment with the SOA production shows that the model can better represent the observed diurnal pattern of surface PM2.5 concentration in summer 659 660 showing the maximum concentration in the daytime (Fig. S13 in the supporting material). 661 This indicates that the SOA production may be important for modeling the diurnal variation of surface PM_{2.5} concentration in summer over East China, which suggests more detailed 662 analysis of impact of SOA production on diurnal cycle of surface PM_{2.5} concentration is 663 needed with observations. It is also noteworthy that the impact of SOA production on diurnal 664 665 variation of surface PM_{2.5} concentration is only significant in summer, likely due to the 666 strong photochemistry activity in summer. Another uncertainty of the results in this study may be related to emissions. Although the diurnal variation and injection height of emission 667 do not contribute significantly to the night time positive biases of surface PM_{2.5} 668

669 concentration, the emission uncertainties of primary PM may influence the diurnal cycle of 670 surface $PM_{2.5}$. For example, overestimation of primary PM emission can increase the diurnal 671 variation. Therefore, this study suggests that the long-term measurements of $PM_{2.5}$ 672 components at more stations are needed to further investigate the characteristics of diurnal 673 variation of $PM_{2.5}$, which can improve our understanding of the impacts of multiple 674 processes, such as chemical production, emissions, and meteorology, on the formation and 675 evolution of air pollution.

676

677 Data availability

678 The release version of WRF-Chem can be download from 679 http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The updated USTC 680 version of WRF-Chem can be downloaded from http://aemol.ustc.edu.cn/product/list/ or 681 contact chunzhao@ustc.edu.cn. Also, the code modifications will be incorporated the release 682 version of WRF-Chem in future.

683

684 Author contributions

685 Qiuyan Du and Chun Zhao designed the experiments, conducted and analyzed the686 simulations. All authors contributed to the discussion and final version of the paper.

687

688 Acknowledgements

689 This research was supported by the Fundamental Research Funds for the Central 690 Universities, and the National Natural Science Foundation of China (grant 41775146). The 691 study used the computing resources from the High-Performance Computing Center of 692 University of Science and Technology of China (USTC). Part of the observation data is from 693 the Qingyue Open Environmental Data Center (https://data.epmap.org).

694

696	Reference
697	Ackerman, T. P.: A Model of the Effect of Aerosols on Urban Climates with Particular
698	Applications to the Los Angeles Basin, J. Atmos. Sci., 34, 531-547, doi:10.1175/1520-
699	0469(1977)034<0531:AMOTEO>2.0.CO;2, 1977.
700	Arola, A., Eck, T. F., Huttunen, J., Lehtinen, K. E. J., Lindfors, A. V., Myhre, G., Smirnov,
701	A., Tripathi, S. N., and Yu, H.: Influence of observed diurnal cycles of aerosol optical
702	depth on aerosol direct radiative effect, Atmos. Chem. Phys., 13, 7895-7901, 2013.
703	Bacmeister, J. T., Wehner, M. F., Neale, R. B., Gettelman, A., Hannay, C., Lauritzen, P. H.,
704	Caron, J. M., and Truesdale, J. E.: Exploratory High-Resolution Climate Simulations
705	using the Community Atmosphere Model (CAM), J. Climate, 27, 3073-3099,
706	doi:10.1175/JCLI-D-13-00387.1, 2014.
707	Barnard, J. C., Fast, J. D., Paredes-Miranda, G., Arnott, W. P., and Laskin, A.: Technical Note:
708	Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module
709	using data from the MILAGRO campaign, Atmos. Chem. Phys., 10, 7325-7340,
710	doi:10.5194/acp-10-7325-2010, 2010.
711	Bei, N., Li, G., Huang, R., Cao, J., Meng, N., Feng, T., Liu, S., Zhang, T., Zhang, Q., and
712	Molina, L. T.: Typical synoptic situations and their impacts on the wintertime air
713	pollution in the Guanzhong basin, China, Atmos. Chem. Phys., 16, e7387, 2016.
714	Binkowski, F. S. and Shankar, U.: The Regional Particulate Matter Model: 1. Model
715	Description and Preliminary Results, J. Geophys. Res., 100, 26191-26209, 1995.
716	Cai, H. and Xie, S.: Traffic-related air pollution modeling during the 2008 Beijing Olympic
717	Games: the effects of an odd-even day traffic restriction scheme, The Science of the
718	total environment, 409, 1935–1948, doi:10.1016/j.scitotenv.2011.01.025, 2011.
719	Chapman, E. G., Gustafson, W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S.,
720	and Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model:
721	investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9,
722	945-964, 2008.
723	Chen, D., Cui, H., Zhao, Y., Yin, L., Lu, Y., and Wang, Q.: A two-year study of carbonaceous
724	aerosols in ambient $PM_{2.5}$ at a regional background site for western Yangtze River Delta,
725	China, Atmospheric Research, 183, 351-361, doi:10.1016/j.atmosres.2016.09.004,
726	2017.
727	Chen, S., Zhao, C., Qian, Y., Leung, L. R., Huang, J., Huang, Z., Bi, J., Zhang, W., Shi, J.,
728	Yang, L., Li, D., and Li, J.: Regional modeling of dust mass balance and radiative

729	forcing over East Asia using WRF-Chem, Aeolian Research, 15, 15-30,
730	doi:10.1016/j.aeolia.2014.02.001, 2014.
731	Chen, T., He, J., Lu, X., She, J., and Guan, Z.: Spatial and Temporal Variations of PM _{2.5} and
732	Its Relation to Meteorological Factors in the Urban Area of Nanjing, China,
733	International journal of environmental research and public health, 13,
734	doi:10.3390/ijerph13090921, 2016.
735	Chen, W., Tang, H., and Zhao, H.: Diurnal, weekly and monthly spatial variations of air
736	pollutants and air quality of Beijing, Atmospheric Environment, 119, 21-34,
737	doi:10.1016/j.atmosenv.2015.08.040, 2015.
738	Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K.,
739	Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as
740	a source of sulfate during haze events in China, Science advances, 2, e1601530,
741	doi:10.1126/sciadv.1601530, 2016.
742	Davidson C I, Phalen R F, Solomon P A.: Airborne particulate matter and human health: A
743	review, 39(8), 737–749, 2005.
744	Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong,
745	S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, JP., Textor, C., Schulz,
746	M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor
747	gases in the years 2000 and 1750, prescribed data-sets for AeroCom, Atmos. Chem.
748	Phys., 6, 4321-4344, 2006.
749	Dickerson, R. R., Kondragunta, S., Stenchikov, G., Civerolo, K. L., Doddridge, B. G., and
750	Holben, B. N.: The impact of aerosols on solar ultraviolet radiation and photochemical
751	smog, Science (New York, N.Y.), 278, 827-830, doi:10.1126/science.278.5339.827,
752	1997.
753	Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Petäjä, T., Kerminen, V. M., Wang, T., Xie, Y.,
754	Herrmann, E., Zheng, L. F., Nie, W., Liu, Q., Wei, X. L., Kulmala, M.: Intense
755	atmospheric pollution modifies weather: a case of mixed biomass burning with fossil
756	fuel combustion pollution in eastern China, Atmospheric Chemistry and Physics, 13,
757	10545–10554, 2013.
758	Du, Q., Faber, V., & Gunzburger, M.: Centroidal Voronoi tessellations: Applications and
759	algorithms, SIAM review, 41, 637-676, 1999.
760	Easter, R. C., Ghan, S. J., Zhang, Y., Saylor, R. D., Chapman, E. G., Laulainen, N. S., Abdul-
761	Razzak, H., Leung, L. R., Bian, X., and Zaveri, R. A.: MIRAGE: Model Description

762	and Evaluation of Aerosols and Trace Gases, J. Geophys. Res., 109, D20210,
763	doi:10.1029/2004JD004571, 2004.
764	Fast, J. D, Gustafson Jr., W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G.,
765	and Grell, G. A.: Evolution of ozone, particulates, and aerosol direct forcing in an urban
766	area using a new fully-coupled meteorology, chemistry, and aerosol model, J. Geophys.
767	Res., 111, D21305, doi:10.1029/2005JD006721, 2006.
768	Feng, J., Zhong, M., Xu, B., Du, Y., Wu, M., Wang, H., and Chen, C.: Concentrations,
769	seasonal and diurnal variations of black carbon in PM2.5 in Shanghai, China,
770	Atmospheric Research, 147-148, 1-9, doi:10.1016/j.atmosres.2014.04.018, 2014.
771	Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., and Streets, D. G.:
772	Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze
773	River Delta, China, Atmospheric Environment, 42, 2023–2036,
774	doi:10.1016/j.atmosenv.2007.12.002, 2008.
775	Gakidou, E., Afshin, A., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., & Abu-
776	Raddad, L.: Global, regional, and national comparative risk assessment of 84 behavioural,
777	environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a
778	systematic analysis for the Global Burden of Disease Study 2016, The Lancet, 390, 1345-
779	1422, 2017.
780	Gao, Y., Liu, X., Zhao, C., and Zhang, M.: Emission controls versus meteorological
781	conditions in determining aerosol concentrations in Beijing during the 2008 Olympic
782	Games, Atmos. Chem. Phys., 11, 12437–12451, doi:10.5194/acp-11-12437-2011, 2011.
783	Gao, Y., Zhao, C., Liu, X., Zhang, M., and Leung, L. R.: WRF-Chem simulations of aerosols
784	and anthropogenic aerosol radiative forcing in East Asia, Atmospheric Environment,
785	92, 250–266, doi:10.1016/j.atmosenv.2014.04.038, 2014.
786	Geng, G., Zhang, Q., Martin, R. V., van Donkelaar, A., Huo, H., Che, H., Lin, J., and He, K.:
787	Estimating long-term PM2.5 concentrations in China using satellite-based aerosol
788	optical depth and a chemical transport model, Remote Sensing of Environment, 166,
789	262–270, doi:10.1016/j.rse.2015.05.016, 2015.
790	Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.:
791	Sources and distributions of dust aerosols simulated with the GOCART model, J.
792	Geophys. Res., 106, 20225–20273, 2001.
793	Gong, D.Y., Ho, CH., Chen, D., Qian, Y., Choi, YS., and Kim, J.: Weekly cycle of aerosol-
794	meteorology interaction over China, J. Geophys. Res., 112, L03819,
795	doi:10.1029/2007JD008888, 2007.

796	Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron
797	particles, Global Biogeochem. Cycles, 17, n/a-n/a, doi:10.1029/2003GB002079, 2003.
798	Grell, G. A., Peckham, S. E., Schmitz, R., and McKeen, S. A., Frost, G., Skamarock, W. C.,
799	and Eder, B.: Fully coupled "online" chemistry within the WRF model, Atmos.
800	Environ., 39, 6957–6976, 2005.
801	Gu, Z., Feng, J., Han, W., Li, L., Wu, M., Fu, J., and Sheng, G.: Diurnal variations of
802	polycyclic aromatic hydrocarbons associated with PM2.5 in Shanghai, China, Journal of
803	environmental sciences (China), 22, 389-396, 2010.
804	Guo, H., Cheng, T., Gu, X., Wang, Y., Chen, H., Bao, F., Shi, S., Xu, B., Wang, W., Zuo, X.,
805	Zhang, X., and Meng, C.: Assessment of PM2.5 concentrations and exposure throughout
806	China using ground observations, The Science of the total environment, 601-602,
807	1024-1030, doi:10.1016/j.scitotenv.2017.05.263, 2017.
808	Guo, J., Xia, F., Zhang, Y., Liu, H., Li, J., Lou, M., He, J., Yan, Y., Wang, F., Min, M., and
809	Zhai, P.: Impact of diurnal variability and meteorological factors on the PM _{2.5} - AOD
810	relationship: Implications for PM2.5 remote sensing, Environmental pollution (Barking,
811	Essex 1987), 221, 94–104, doi:10.1016/j.envpol.2016.11.043, 2017.
812	Gustafson, W. I., Chapman, E. G., Ghan, S. J., Easter, R. C., and Fast, J. D.: Impact on
813	modeled cloud characteristics due to simplified treatment of uniform cloud
814	condensation nuclei during NEAQS 2004, Geophys. Res. Lett., 34, L19809,
815	doi:10.1029/2007GL030021, 2007.
816	Ho, H. C., Wong, M. S., Yang, L., Shi, W., Yang, J., Bilal, M., and Chan, TC.:
817	Spatiotemporal influence of temperature, air quality, and urban environment on cause-
818	specific mortality during hazy days, Environment international, 112, 10-22,
819	doi:10.1016/j.envint.2017.12.001, 2018.
820	Hong, SY., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit
821	Treatment of Entrainment Processes, Mon. Wea. Rev., 134, 2318-2341,
822	doi:10.1175/MWR3199.1, 2006.
823	Hu, J., Wang, Y., Ying, Q., and Zhang, H.: Spatial and temporal variability of $PM_{2.5}$ and PM_{10}
824	over the North China Plain and the Yangtze River Delta, China, Atmospheric
825	Environment, 95, 598-609, doi:10.1016/j.atmosenv.2014.07.019, 2014.
826	Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-Year Simulation of Ozone and Particulate
827	Matter in China Using WRF/CMAQ Modeling System, Atmos. Chem. Phys., 16, 10333,
828	2016.

829	Hu, Z., Zhao, C., Huang, J., Leung, L. R., Qian, Y., Yu, H., Huang, L., and Kalashnikova, O.
830	V.: Trans-pacific transport and evolution of aerosols: Evaluation of quasi global WRF-
831	Chem simulation with multiple observations, Geosci. Model Dev. Discuss., 1-65,
832	doi:10.5194/gmd-2015-248, 2016.
833	Hu, Z., Huang, J., Zhao, C., Bi, J., Jin, Q., Qian, Y., Leung, L. R., Feng, T., Chen, S., and
834	Ma, J.: Modeling the contributions of Northern Hemisphere dust sources to dust
835	outflow from East Asia, Atmospheric Environment, 202, 234-243,
836	doi:10.1016/j.atmosenv.2019.01.022, 2019.
837	Huang, G., Cheng, T., Zhang, R., Tao, J., Leng, C., Zhang, Y., Zha, S., Zhang, D., Li, X., and
838	Xu, C.: Optical properties and chemical composition of PM2.5 in Shanghai in the spring
839	of 2012, Particuology, 13, 52-59, doi:10.1016/j.partic.2013.10.005, 2014.
840	Huang, X., Ding, A., Liu, L., Liu, Q., Ding, K., Nie, W., Xu, Z., Chi, X., Wang, M., Sun, J.,
841	Guo, W., and Fu, C.: Effects of aerosol-radiation interaction on precipitation during
842	biomass-burning season in East China, Atmos. Chem. Phys., 16, 2016.
843	Huang, X.F., He, L.Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L.,
844	Zeng, LW., Liu, XG., Zhang, YH., Jayne, J. T., Ng, N. L., and Worsnop, D. R.:
845	Highly time-resolved chemical characterization of atmospheric submicron particles
846	during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol
847	Mass Spectrometer, Atmos. Chem. Phys., 10, 8933-8945, 2010.
848	Iacono, M. J., Mlawer, E. J., Clough, S. A., & Morcrette, J. J.: Impact of an improved
849	longwave radiation model, RRTM, on the energy budget and thermodynamic properties
850	of the NCAR community climate model, CCM3, Journal of Geophysical Research:
851	Atmospheres, 105, 14873-14890, 2000.
852	Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysis rate coefficient and
853	temperature profiles over an urban airshed, J. Geophys. Res., 103, 10593-10604,
854	doi:10.1029/98JD00287, 1998.
855	Jaegl é, L., Quinn, P. K., Bates, T. S., Alexander, B., & Lin, J. T.: Global distribution of sea salt
856	aerosols: new constraints from in situ and remote sensing observations, Atmospheric
857	Chemistry and Physics, 11, 3137-3157, 2011.
858	Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G.,
859	Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., van der Denier Gon, H., Klimont,
860	Z., Frost, G., Darras, S., and Koffi, B.: HTAP_v2: a mosaic of regional and global
861	emission gridmaps for 2008 and 2010 to study hemispheric transport of air pollution,

862	Atmos. Chem. Phys. Discuss., 15, 12867-12909, doi:10.5194/acpd-15-12867-2015,
863	2015.
864	Jia, M., Zhao, T., Cheng, X., Gong, S., Zhang, X., Tang, L., Liu, D., Wu, X., Wang, L., and
865	Chen, Y.: Inverse Relations of PM _{2.5} and O ₃ in Air Compound Pollution between Cold
866	and Hot Seasons over an Urban Area of East China, Atmosphere, 8, 59,
867	doi:10.3390/atmos8030059, 2017.
868	Jiang, F., Liu, Q., Huang, X., Wang, T., Zhuang, B., and Xie, M.: Regional modeling of
869	secondary organic aerosol over China using WRF/Chem, Journal of Aerosol Science,
870	43, 57–73, doi:10.1016/j.jaerosci.2011.09.003, 2012.
871	Kain, J. S.: The Kain-Fritsch convective parameterization: An update, J. Appl. Meteorol.,
872	43, 170–181, 2004.
873	Kassianov, E., Barnard, J., Pekour, M., Berg, L. K., Michalsky, J., Lantz, K., and Hodges,
874	G.: Do diurnal aerosol changes affect daily average radiative forcing?, Geophys. Res.
875	Lett., 40, 3265–3269, doi:10.1002/grl.50567, 2013.
876	Kok, J. F.: A scaling theory for the size distribution of emitted dust aerosols suggests climate
877	models underestimate the size of the global dust cycle, Proceedings of the National
878	Academy of Sciences of the United States of America, 108, 1016-1021,
879	doi:10.1073/pnas.1014798108, 2011.
880	Kuang, Y., Zhao, C. S., Tao, J. C., and Ma, N.: Diurnal variations of aerosol optical properties
881	in the North China Plain and their influences on the estimates of direct aerosol radiative
882	effect, Atmos. Chem. Phys., 15, 5761–5772, doi:10.5194/acp-15-5761-2015, 2015.
883	Li, G., Wang, Y., Lee, K. H., Diao, Y., & Zhang, R.: Impacts of aerosols on the development
884	and precipitation of a mesoscale squall line, Journal of Geophysical Research:
885	Atmospheres, 114, 2009.
886	Li, J., Wang, G., Aggarwal, S. G., Huang, Y., Ren, Y., Zhou, B., Singh, K., Gupta, P. K., Cao,
887	J., and Zhang, R.: Comparison of abundances, compositions and sources of elements,
888	inorganic ions and organic compounds in atmospheric aerosols from Xi'an and New
889	Delhi, two megacities in China and India, The Science of the total environment, 476-
890	477, 485–495, doi:10.1016/j.scitotenv.2014.01.011, 2014.
891	Li, J., Yang, W., Wang, Z., Chen, H., Hu, B., Li, J., Sun, Y., Fu, P., and Zhang, Y.: Modeling
892	study of surface ozone source-receptor relationships in East Asia, Atmospheric
893	Research, 167, 77-88, doi:10.1016/j.atmosres.2015.07.010, 2016.
894	Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., & Zhang, Q.: Anthropogenic
895	emission inventories in China: a review, National Science Review, 4, 834-866, 2017.

896	Li, M., Zhang, Q., Kurokawa, Ji., Woo, JH., He, K., Lu, Z., Ohara, T., Song, Y., Streets,
897	D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su,
898	H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the
899	international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem.
900	Phys., 17, 935–963, doi:10.5194/acp-17-935-2017, 2017.
901	Li, P., Wang, L., Guo, P., Yu, S., Mehmood, K., Wang, S., Liu, W., Seinfeld, J. H., Zhang,
902	Y., Wong, D. C., Alapaty, K., Pleim, J., and Mathur, R.: High reduction of ozone and
903	particulate matter during the 2016 G-20 summit in Hangzhou by forced emission
904	controls of industry and traffic, Environ Chem Lett, 15, 709-715, doi:10.1007/s10311-
905	017-0642-2, 2017.
906	Li, R., Li, Z., Gao, W., Ding, W., Xu, Q., & Song, X.: Diurnal, seasonal, and spatial variation
907	of PM _{2.5} in Beijing, Science Bulletin, 60, 387-395, 2015.
908	Li, T., Horton, R. M., Bader, D. A., Liu, F., Sun, Q., and Kinney, P. L.: Long-term projections
909	of temperature-related mortality risks for ischemic stroke, hemorrhagic stroke, and
910	acute ischemic heart disease under changing climate in Beijing, China, Environment
911	international, 112, 1-9, doi:10.1016/j.envint.2017.12.006, 2018.
912	Li, X., Zhang, Q., Zhang, Y., Zheng, B., Wang, K., Chen, Y., Wallington, T. J., Han, W., Shen,
913	W., Zhang, X., and He, K.: Source contributions of urban PM2.5 in the Beijing-Tianjin-
914	Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and
915	meteorology, Atmospheric Environment, 123, 229–239,
916	doi:10.1016/j.atmosenv.2015.10.048, 2015.
917	Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., & Zhu, B.: Aerosol and boundary-layer
918	interactions and impact on air quality, National Science Review, 4, 810-833, 2017.
919	Liao, J., Wang, T., Wang, X., Xie, M., Jiang, Z., Huang, X., and Zhu, J.: Impacts of different
920	urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze
921	River Delta, China, Atmospheric Research, 145-146, 226-243,
922	doi:10.1016/j.atmosres.2014.04.005, 2014.
923	Lin, M., Tao, J., Chan, CY., Cao, JJ., Zhang, ZS., Zhu, LH., and Zhang, RJ.:
924	Regression Analyses between Recent Air Quality and Visibility Changes in Megacities
925	at Four Haze Regions in China, Aerosol Air Qual. Res., 12, 1049-1061,
926	doi:10.4209/aaqr.2011.11.0220, 2012.
927	Lin, W., Xu, X., Ma, Z., Zhao, H., Liu, X., and Wang, Y.: Characteristics and recent trends
928	of sulfur dioxide at urban, rural, and background sites in north China: effectiveness of
929	control measures, Journal of environmental sciences (China), 24, 34–49, 2012.

930	Liu, J., Li, J., and Li, W.: Temporal Patterns in Fine Particulate Matter Time Series in Beijing:
931	A Calendar View, Scientific reports, 6, 32221, doi:10.1038/srep32221, 2016.
932	Liu, M., Lin, J., Wang, Y., Sun, Y., Zheng, B., Shao, J., & Yan, Y.: Spatiotemporal
933	variability of NO 2 and PM _{2.5} over Eastern China: observational and model analyses
934	with a novel statistical method, Atmospheric Chemistry and Physics, 18, 12933-12952,
935	2018.
936	Liu, S., Hua, S., Wang, K., Qiu, P., Liu, H., Wu, B., Shao, P., Liu, X., Wu, Y., Xue, Y., Hao,
937	Y., and Tian, H.: Spatial-temporal variation characteristics of air pollution in Henan of
938	China: Localized emission inventory, WRF/Chem simulations and potential source
939	contribution analysis, The Science of the total environment, 624, 396-406,
940	doi:10.1016/j.scitotenv.2017.12.102, 2018.
941	Liu, T., Cai, Y., Feng, B., Cao, G., Lin, H., Xiao, J., Li, X., Liu, S., Pei, L., Fu, L., Yang, X.,
942	Zhang, B., and Ma, W.: Long-term mortality benefits of air quality improvement during
943	the twelfth five-year-plan period in 31 provincial capital cities of China, Atmospheric
944	Environment, 173, 53-61, doi:10.1016/j.atmosenv.2017.10.054, 2018.
945	Liu, XY., Zhang, Y., Zhang, Q., and He, KB.: Application of online-coupled WRF/Chem-
946	MADRID in East Asia: Model evaluation and climatic effects of anthropogenic
947	aerosols, Atmospheric Environment, 124, 321–336,
948	doi:10.1016/j.atmosenv.2015.03.052, 2016.
949	Ma, Q., Wu, Y., Tao, J., Xia, Y., Liu, X., Zhang, D., Han, Z., Zhang, X., and Zhang, R.:
950	Variations of Chemical Composition and Source Apportionment of PM2.5 during Winter
951	Haze Episodes in Beijing, Aerosol Air Qual. Res., 17, 2791-2803,
952	doi:10.4209/aaqr.2017.10.0366, 2017.
953	Ma, Y., Xu, X., Song, W., Geng, F., and Wang, L.: Seasonal and diurnal variations of
954	particulate organosulfates in urban Shanghai, China, Atmospheric Environment, 85,
955	152-160, doi:10.1016/j.atmosenv.2013.12.017, 2014.
956	Menut, L., Goussebaile, A., Bessagnet, B., Khvorostiyanov, D., and Ung, A.: Impact of
957	realistic hourly emissions profiles on air pollutants concentrations modelled with
958	CHIMERE, Atmospheric Environment, 49, 233–244,
959	doi:10.1016/j.atmosenv.2011.11.057, 2012.
960	Miao, Y., Guo, J., Liu, S., Zhao, C., Li, X., Zhang, G., Wei, W., and Ma, Y.: Impacts of
961	synoptic condition and planetary boundary layer structure on the trans-boundary
962	aerosol transport from Beijing-Tianjin-Hebei region to northeast China, Atmospheric
963	Environment, 181, 1-11, doi:10.1016/j.atmosenv.2018.03.005, 2018.

964	Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough.: Radiative
965	transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the
966	longwave, J. Geophys. Res., 102 , 16 663–16 682, 1997.
967	Morrison, H., Thompson, G., and Tatarskii, V.: Impact of Cloud Microphysics on the
968	Development of Trailing Stratiform Precipitation in a Simulated Squall Line:
969	Comparison of One- and TwoMoment Schemes, Mon. Weather Rev., 137, 991-1007,
970	2009.
971	Nakanishi, M. and Niino, H.: An Improved Mellor-Yamada Level-3 Model: Its Numerical
972	Stability and Application to a Regional Prediction of Advection Fog, Boundary-Layer
973	Meteorol, 119, 397-407, doi:10.1007/s10546-005-9030-8, 2006.
974	Ni, ZZ., Luo, K., Zhang, JX., Feng, R., Zheng, HX., Zhu, HR., Wang, JF., Fan, JR.,
975	Gao, X., and Cen, KF.: Assessment of winter air pollution episodes using long-range
976	transport modeling in Hangzhou, China, during World Internet Conference, 2015,
977	Environmental pollution (Barking, Essex 1987), 236, 550-561,
978	doi:10.1016/j.envpol.2018.01.069, 2018.
979	Olivier, J., Peters, J., Granier, C., Petron, G., Muller, J. F., and Wallens, S.: Present and Future
980	surface emissions of anthropogenic compounds, POET report #2, EU project EVK2-
981	1999-00011, 2003.
982	Pal, S., Lee, T. R., Phelps, S., and Wekker, S. F. J. de: Impact of atmospheric boundary layer
983	depth variability and wind reversal on the diurnal variability of aerosol concentration
984	at a valley site, The Science of the total environment, 496, 424-434,
985	doi:10.1016/j.scitotenv.2014.07.067, 2014.
986	Pathak, R. K., Wang, T., and Wu, W. S.: Nighttime enhancement of PM _{2.5} nitrate in
987	ammonia-poor atmospheric conditions in Beijing and Shanghai: Plausible contributions
988	of heterogeneous hydrolysis of N_2O_5 and HNO_3 partitioning, Atmospheric
989	Environment, 45, 1183-1191, doi:10.1016/j.atmosenv.2010.09.003, 2011.
990	Pet äj ä, T., J ärvi, L., Kerminen, VM., Ding, A. J., Sun, J. N., Nie, W., Kujansuu, J., Virkkula,
991	A., Yang, XQ., Fu, C. B., Zilitinkevich, S., and Kulmala, M.: Enhanced air pollution
992	via aerosol-boundary layer feedback in China, Scientific reports, 6, 18998,
993	doi:10.1038/srep18998, 2016.
994	Pope III C A, Dockery D W.: Health effects of fine particulate air pollution: lines that connect,
995	Journal of the air & waste management association, 56, 709-742, 2006.

996	Qi, H., Lin, W., Xu, X., Yu, X., and Ma, Q.: Significant downward trend of SO ₂ observed
997	from 2005 to 2010 at a background station in the Yangtze Delta region, China, Sci.
998	China Chem., 55, 1451–1458, doi:10.1007/s11426-012-4524-y, 2012.
999	Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P., and Zhao, D.:
1000	Evolution of planetary boundary layer under different weather conditions, and its
1001	impact on aerosol concentrations, Particuology, 11, 34-40,
1002	doi:10.1016/j.partic.2012.04.005, 2013.
1003	Roig Rodelas, R., Perdrix, E., Herbin, B., and Riffault, V.: Characterization and variability
1004	of inorganic aerosols and their gaseous precursors at a suburban site in northern France
1005	over one year (2015–2016), Atmospheric Environment, 200, 142–157,
1006	doi:10.1016/j.atmosenv.2018.11.041, 2019.
1007	Sawyer V R. Interaction between aerosol and the planetary boundary layer depth at sites in
1008	the US and China[C]//AGU Fall Meeting Abstracts. 2015.
1009	Seaman, N. L., Stauffer, D. R., and Lario-Gibbs, A. M.: A Multiscale Four-Dimensional Data
1010	Assimilation System Applied in the San Joaquin Valley during SARMAP. Part I:
1011	Modeling Design and Basic Performance Characteristics, J. Appl. Meteor., 34, 1739-
1012	1761, doi:10.1175/1520-0450(1995)034<1739:AMFDDA>2.0.CO;2, 1995.
1013	Seaton, A., MacNee, W., Donaldson, K., and Godden, D.: Particulate air pollution and acute
1014	health effects, Lancet (London, England), 345, 176-178, doi:10.1016/s0140-
1015	6736(95)90173-6, 1995.
1016	Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song,
1017	S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol
1018	formation mechanisms during wintertime Chinese haze events: air quality model
1019	assessment using observations of sulfate oxygen isotopes in Beijing, Atmos. Chem.
1020	Phys., 19, 6107-6123, doi:10.5194/acp-19-6107-2019, 2019.
1021	Song, J., Xia, X., Che, H., Wang, J., Zhang, X., and Li, X.: Daytime variation of aerosol
1022	optical depth in North China and its impact on aerosol direct radiative effects,
1023	Atmospheric Environment, 182, 31-40, doi:10.1016/j.atmosenv.2018.03.024, 2018.
1024	Stauffer, D. R. and Seaman, N. L.: Use of four-dimensional data assimilation in a limited-
1025	area mesoscale model, Part I: Experiments with synoptic-scale data, Mon. Weather
1026	Rev., 118, 1250–1277, 1990.

- Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and
 surface pollutants derived from lidar observations over China, Atmos. Chem. Phys., 18,
 15921-15935, 2018.
- Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne,
 J., and Worsnop, D. R.: Long-term real-time measurements of aerosol particle
 composition in Beijing, China: seasonal variations, meteorological effects, and source
 analysis, Atmos. Chem. Phys., 15, 10149-10165, 2015.
- Tao, M., Chen, L., Li, R., Wang, L., Wang, J., Wang, Z., Tang, G., and Tao, J.: Spatial
 oscillation of the particle pollution in eastern China during winter: Implications for
 regional air quality and climate, Atmospheric Environment, 144, 100–110,
 doi:10.1016/j.atmosenv.2016.08.049, 2016.
- Tao, W., Liu, J., Ban-Weiss, G. A., Hauglustaine, D. A., Zhang, L., Zhang, Q., Cheng, Y., Yu,
 Y., and Tao, S.: Effects of urban land expansion on the regional meteorology and air
 quality of Eastern China, Atmos. Chem. Phys., 15, 8597-8614, 2015.
- 1041 Tiwari, S., Srivastava, A. K., Bisht, D. S., Parmita, P., Srivastava, M. K., and Attri, S. D.:
 1042 Diurnal and seasonal variations of black carbon and PM_{2.5} over New Delhi, India:
 1043 Influence of meteorology, Atmospheric Research, 125-126, 50–62,
 1044 doi:10.1016/j.atmosres.2013.01.011, 2013.
- 1045 Verma, V., Ning, Z., Cho, A. K., Schauer, J. J., Shafer, M. M., and Sioutas, C.: Redox activity
 1046 of urban quasi-ultrafine particles from primary and secondary sources, Atmospheric
 1047 Environment, 43, 6360–6368, doi:10.1016/j.atmosenv.2009.09.019, 2009.
- Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J.,
 Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z.,
 Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J.,
- 1051 Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J.,
- 1052 Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A.,
- Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to
 Chinese haze, Proceedings of the National Academy of Sciences of the United States
 of America, 113, 13630–13635, doi:10.1073/pnas.1616540113, 2016.
- 1056 Wang, J., Christopher, S. A., Nair, U. S., Reid, J. S., Prins, E. M., Szykman, J., & Hand, J.
- 1057 L.: Mesoscale modeling of Central American smoke transport to the United States:
- 1058 1."Top-down" assessment of emission strength and diurnal variation impacts, Journal
- 1059 of Geophysical Research: Atmospheres, 111, 2006.

1060	Wang, T., Jiang, F., Deng, J., Shen, Y., Fu, Q., Wang, Q., Fu, Y., Xu, J., and Zhang, D.: Urban
1061	air quality and regional haze weather forecast for Yangtze River Delta region,
1062	Atmospheric Environment, 58, 70-83, doi:10.1016/j.atmosenv.2012.01.014, 2012.
1063	Wang, X., Liang, XZ., Jiang, W., Tao, Z., Wang, J. X.L., Liu, H., Han, Z., Liu, S., Zhang,
1064	Y., and Grell, G. A.: WRF-Chem simulation of East Asian air quality: Sensitivity to
1065	temporal and vertical emissions distributions, Atmospheric Environment, 44, 660-669,
1066	doi:10.1016/j.atmosenv.2009.11.011, 2010.
1067	Wang, X.P., Mauzerall, D. L., Hu, Y., Russell, A. G., Larson, E. D., Woo, JH., Streets, D.
1068	G., and Guenther, A.: A high-resolution emission inventory for eastern China in 2000
1069	and three scenarios for 2020, Atmospheric Environment, 39, 5917-5933,
1070	doi:10.1016/j.atmosenv.2005.06.051, 2005.
1071	Wang, Y.G., Ying, Q., Hu, J., and Zhang, H.: Spatial and temporal variations of six criteria
1072	air pollutants in 31 provincial capital cities in China during 2013-2014, Environment
1073	international, 73, 413-422, doi:10.1016/j.envint.2014.08.016, 2014.
1074	Wang, Y.J., Li, L., Chen, C., Huang, C., Huang, H., Feng, J., Wang, S., Wang, H., Zhang, G.,
1075	Zhou, M., Cheng, P., Wu, M., Sheng, G., Fu, J., Hu, Y., Russell, A. G., and Wumaer, A.:
1076	Source apportionment of fine particulate matter during autumn haze episodes in
1077	Shanghai, China, J. Geophys. Res. Atmos., 119, 1903–1914,
1078	doi:10.1002/2013JD019630, 2014.
1079	Wang, Y.X., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang, Q., Philip,
1080	S., and Xie, Y.: Enhanced sulfate formation during China's severe winter haze episode
1081	in January 2013 missing from current models, J. Geophys. Res. Atmos., 119, 10,425-
1082	10,440, doi:10.1002/2013JD021426, 2014.
1083	Wang, Z., Liu, D., Wang, Y., and Shi, G.: Diurnal aerosol variations do affect daily averaged
1084	radiative forcing under heavy aerosol loading observed in Hefei, China, Atmos. Meas.
1085	Tech., 8, 2901–2907, doi:10.5194/amt-8-2901-2015, 2015.
1086	Wang, Z.F., Li, J., Wang, Z., Yang, W., Tang, X., Ge, B., Yan, P., Zhu, L., Chen, X., Chen,
1087	H., Wand, W., Li, J., Liu, B., Wang, X., Zhao, Y., Lu, N., and Su, D.: Modeling study
1088	of regional severe hazes over mid-eastern China in January 2013 and its implications
1089	on pollution prevention and control, Sci. China Earth Sci., 57, 3-13,
1090	doi:10.1007/s11430-013-4793-0, 2014.
1091	Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J.
1092	J., and Soja, A. J.: The Fire INventory from NCAR (FINN) - a high resolution global

1093	model to estimate the emissions from open burning, Geosci. Model Dev. Discuss., 3,
1094	2439-2476, doi:10.5194/gmdd-3-2439-2010, 2010.
1095	Wu, L., Su, H., and Jiang, J. H.: Regional simulation of aerosol impacts on precipitation
1096	during the East Asian summer monsoon, J. Geophys. Res. Atmos., 118, 6454-6467,
1097	doi:10.1002/jgrd.50527, 2013.
1098	Xie, Y., Zhao, B., Zhang, L., and Luo, R.: Spatiotemporal variations of $PM_{2.5}$ and PM_{10}
1099	concentrations between 31 Chinese cities and their relationships with SO ₂ , NO ₂ , CO
1100	and O ₃ , Particuology, 20, 141–149, doi:10.1016/j.partic.2015.01.003, 2015.
1101	Xu, W. Y., Zhao, C. S., Ran, L., Lin, W. L., Yan, P., & Xu, X. B.: SO 2 noontime-peak
1102	phenomenon in the North China Plain, Atmospheric Chemistry and Physics, 14, 7757-
1103	7768, 2014.
1104	Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J., Fu,
1105	P., Wang, Z., Worsnop, D. R., and Coe, H.: Changes in Aerosol Chemistry From 2014
1106	to 2016 in Winter in Beijing: Insights From High-Resolution Aerosol Mass
1107	Spectrometry, J. Geophys. Res. Atmos., 124, 1132-1147, doi:10.1029/2018JD029245,
1108	2019.
1109	Yang Y, Liao H, Lou S.: Increase in winter haze over eastern China in recent decades: Roles
1110	of variations in meteorological parameters and anthropogenic emissions, Journal of
1111	Geophysical Research: Atmospheres, 121,050-13,065, 2016.
1112	Yang, Y., Smith, S. J., Wang, H., Lou, S., and Rasch, P. J.: Impact of Anthropogenic Emission
1113	Injection Height Uncertainty on Global Sulfur Dioxide and Aerosol Distribution, J.
1114	Geophys. Res. Atmos., 124, 4812–4826, doi:10.1029/2018JD030001, 2019.
1115	Ying, Z., Tie, X., and Li, G.: Sensitivity of ozone concentrations to diurnal variations of
1116	surface emissions in Mexico City: A WRF/Chem modeling study, Atmospheric
1117	Environment, 43, 851-859, doi:10.1016/j.atmosenv.2008.10.044, 2009.
1118	Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-
1119	scale applications, J. Geophys. Res., 104, 30387-30415, doi:10.1029/1999JD900876,
1120	1999.
1121	Zaveri, R. A., Easter, R. C., Fast, J. D., & Peters, L. K.: Model for simulating aerosol
1122	interactions and chemistry (MOSAIC), Journal of Geophysical Research:
1123	Atmospheres, 113, 2008.
1124	Zhang, B., Wang, Y., and Hao, J.: Simulating aerosol-radiation-cloud feedbacks on
1125	meteorology and air quality over eastern China under severe haze conditionsin winter,
1126	Atmos. Chem. Phys., 15, 2387–2404, doi:10.5194/acp-15-2387-2015, 2015.

1127	Zhang, H., Wang, Y., Hu, J., Ying, Q., and Hu, XM.: Relationships between meteorological
1128	parameters and criteria air pollutants in three megacities in China, Environmental
1129	research, 140, 242–254, doi:10.1016/j.envres.2015.04.004, 2015.
1130	Zhang, L., Liao, H., and Li, J.: Impacts of Asian summer monsoon on seasonal and
1131	interannual variations of aerosols over eastern China, J. Geophys. Res., 115, D10307,
1132	doi:10.1029/2009JD012299, 2010.
1133	Zhang, L., Wang, T., Lv, M., and Zhang, Q.: On the severe haze in Beijing during January
1134	2013: Unraveling the effects of meteorological anomalies with WRF-Chem,
1135	Atmospheric Environment, 104, 11-21, doi:10.1016/j.atmosenv.2015.01.001, 2015.
1136	Zhang, R., Li, G., Fan, J., Wu, D. L., and Molina, M. J.: Intensification of Pacific storm track
1137	linked to Asian pollution, Proceedings of the National Academy of Sciences of the
1138	United States of America, 104, 5295-5299, doi:10.1073/pnas.0700618104, 2007.
1139	Zhang, Y., Zhang, X., Wang, L., Zhang, Q., Duan, F., and He, K.: Application of WRF/Chem
1140	over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ,
1141	Atmospheric Environment, 124, 285–300, doi:10.1016/j.atmosenv.2015.07.022, 2016.
1142	Zhang, YL. and Cao, F.: Fine particulate matter (PM 2.5) in China at a city level, Scientific
1143	reports, 5, 14884, doi:10.1038/srep14884, 2015.
1144	Zhao, B., Liou, KN., Gu, Y., Li, Q., Jiang, J. H., Su, H., He, C., Tseng, HL. R., Wang, S.,
1145	Liu, R., Qi, L., Lee, WL., and Hao, J.: Enhanced PM _{2.5} pollution in China due to
1146	aerosol-cloud interactions, Scientific reports, 7, 4453, doi:10.1038/s41598-017-04096-
1147	8, 2017.
1148	Zhao, C., Liu, X., Leung, L. R., Johnson, B., McFarlane, S. A., Gustafson, W. I., Fast, J. D.,
1149	and Easter, R.: The spatial distribution of mineral dust and its shortwave radiative
1150	forcing over North Africa: modeling sensitivities to dust emissions and aerosol size
1151	treatments, Atmospheric Chemistry and Physics, 10, 8821-8838, 2010.
1152	Zhao, C., Liu, X., Leung, L. R., and Hagos, S.: Radiative impact of mineral dust on monsoon
1153	precipitation variability over West Africa, Atmospheric Chemistry and Physics, 11,
1154	1879-1893, 2011.
1155	Zhao C, Liu X, Leung L R.: Impact of the Desert dust on the summer monsoon system over
1156	Southwestern North America, Atmospheric Chemistry and Physics, 12, 3717-3731, 2012.
1157	Zhao, C., Chen, S., Leung, L. R., Qian, Y., Kok, J., Zaveri, R., and Huang, J.: Uncertainty in
1158	modeling dust mass balance and radiative forcing from size parameterization,
1159	Atmospheric Chemistry and Physics, 13, 10733-10753, 2013a.

1160	Zhao, C., Ruby Leung, L., Easter, R., Hand, J., and Avise, J.: Characterization of speciated
1161	aerosol direct radiative forcing over California, J. Geophys. Res. Atmos., 118, 2372-
1162	2388, doi:10.1029/2012JD018364, 2013b.
1163	Zhao, C., Hu, Z., Qian, Y., Leung, L. R., Huang, J., Huang, M., Jin, J., Flanner, M., Zhang,
1164	R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and
1165	their radiative forcing in seasonal snow: a case study over North China with field
1166	campaign measurements, Atmospheric Chemistry and Physics, 14, 11475-11491, 2014.
1167	Zhao, C., Huang, M., Fast, J. D., Berg, L. K., Qian, Y., Guenther, A., & Pfister, G.:
1168	Sensitivity of biogenic volatile organic compounds to land surface parameterizations and
1169	vegetation distributions in California, Geosci. Model Dev, 9, 1959-1976, 2016.
1170	Zhao, S., Yu, Y., Yin, D., He, J., Liu, N., Qu, J., and Xiao, J.: Annual and diurnal variations
1171	of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air
1172	quality monitoring data from China National Environmental Monitoring Center,
1173	Environment international, 86, 92-106, doi:10.1016/j.envint.2015.11.003, 2016.
1174	Zhou, G., Xu, J., Xie, Y., Chang, L., Gao, W., Gu, Y., and Zhou, J.: Numerical air quality
1175	forecasting over eastern China: An operational application of WRF-Chem,
1176	Atmospheric Environment, 153, 94-108, doi:10.1016/j.atmosenv.2017.01.020, 2017.
1177	Zhou, G., Yang, F., Geng, F., Xu, J., Yang, X., Tie, X.: Measuring and modeling aerosol:
1178	relationship with haze events in Shanghai, China, Aerosol and air quality research, 14,
1179	783-792, 2014.

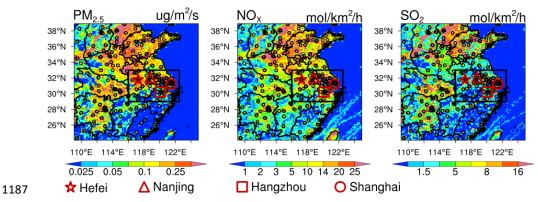
1180	Table 1 Numerical	l experiments conducted in this study.	
------	-------------------	--	--

Name	PBL scheme	Vertical structure	PBL mixing coefficient (m ² /s)	Emission diurnal cycle	Emission injection height
CTL1	MYNN	layer1	Minimum=0.1	Yes	Yes
CTL2	MYNN	layer2	Minimum=0.1	Yes	Yes
CTL3	YSU	layer2	Minimum=0.1	Yes	Yes
EXP1	MYNN	layer1	Minimum = 5.0	Yes	Yes
EXP2	MYNN	layer2	Minimum = 5.0	Yes	Yes
EXP1_E1	MYNN	layer1	Minimum = 5.0	No	Yes
EXP1_E2	MYNN	layer1	Minimum = 5.0	Yes	No

1181

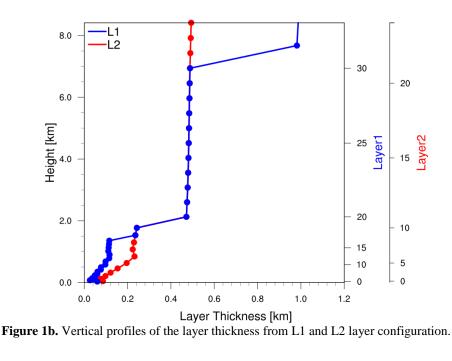
1182

1183 Table 2 Vertical distributions of power plant emissions: percentage of each species allocated


1184	to the height of the vertical layers in the WRF-Chem model.	

Species	Height of Emission Layers (m)					
opecies	0-76	76-153	153-308	308-547	547-871	
SO ₂	5	30	35	25	5	
NOx	5	40	25	25	5	
СО	5	70	20	5	0	
NH ₃	5	75	15	5	0	
NMVOC	5	85	10	0	0	
PM _{2.5}	5	45	25	20	5	
PM10	5	55	20	15	5	
OC	5	70	15	10	0	
BC	5	65	20	10	0	

1185

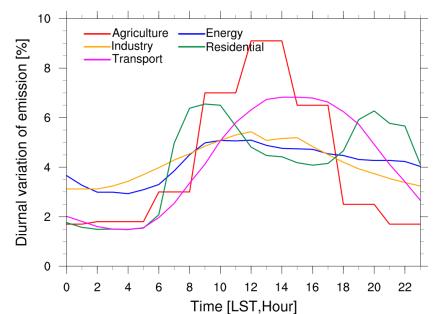


1188 Figure 1a. MEIC China emission of SO₂, NO₂, PM_{2.5} over the simulation domain (109.0°

1189 $E \sim 124.9^{\circ}E$, 24.0°N $\sim 38.9^{\circ}N$) with black boxes showing the analyzed domain (116.0° $E \sim 122.5^{\circ}$

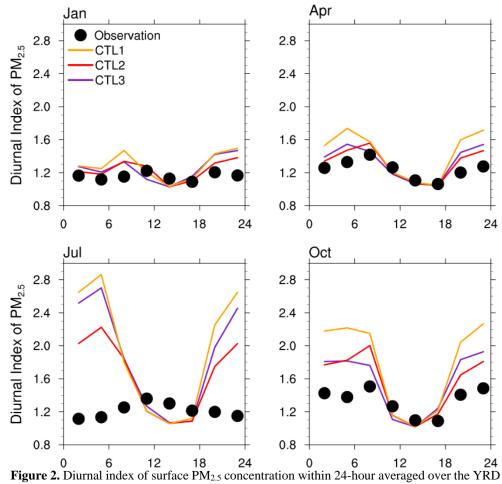
1190 E, 29.0°N~33.0°N), overlaid with observational sites and four cities as the Center (Shanghai,

- 1191 121.45 E and 31.21 N) and sub-Center (Nanjing, 118.78 E and 32.06 N; Hefei, 117.25 E and
- 1192 31.85 N; Hangzhou, 120.08 \oplus and 30.21 N) of the YRD city cluster.
- 1193
- 1194

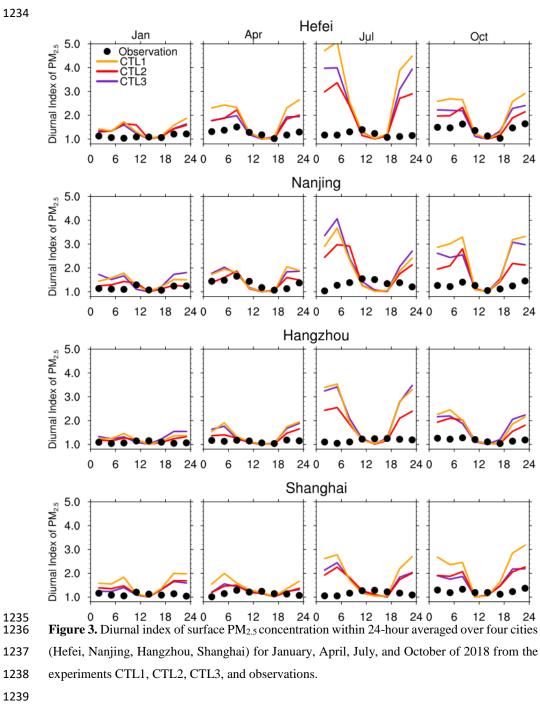


1197

- 1198
- 1199



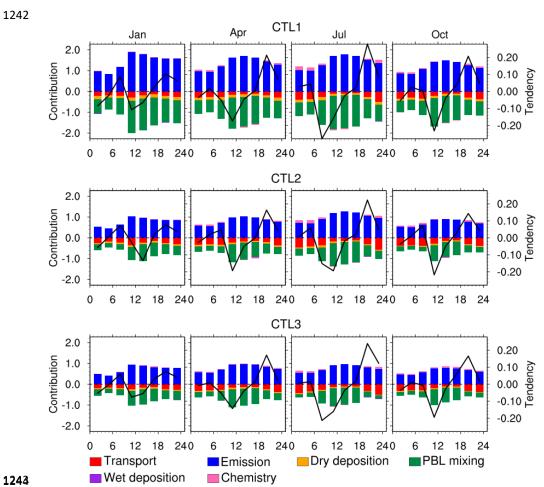
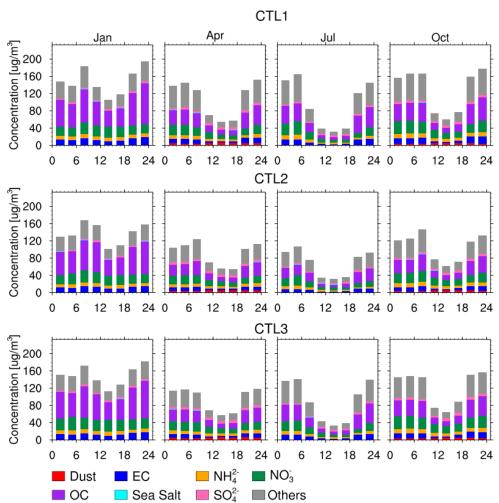
1200 Time [LST,Hour]
 1201 Figure 1c. Diurnal profiles of emissions from five individual sector (agriculture, industry,
 1202 transport, energy, and residential).

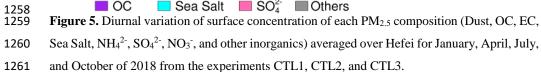


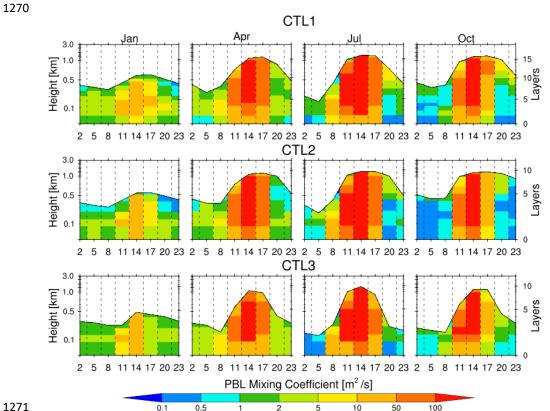
1224 0 6 12 18 24 0 6 12 18 24 1225 Figure 2. Diurnal index of surface PM_{2.5} concentration within 24-hour averaged over the YRD 1226 region of East China (within black box of Fig. 1a) for January, April, July, and October of 2018 1227 from the experiments CTL1, CTL2, CTL3, and observations. The simulated results are from 3-1228 hourly output and sampled at the observational sites.

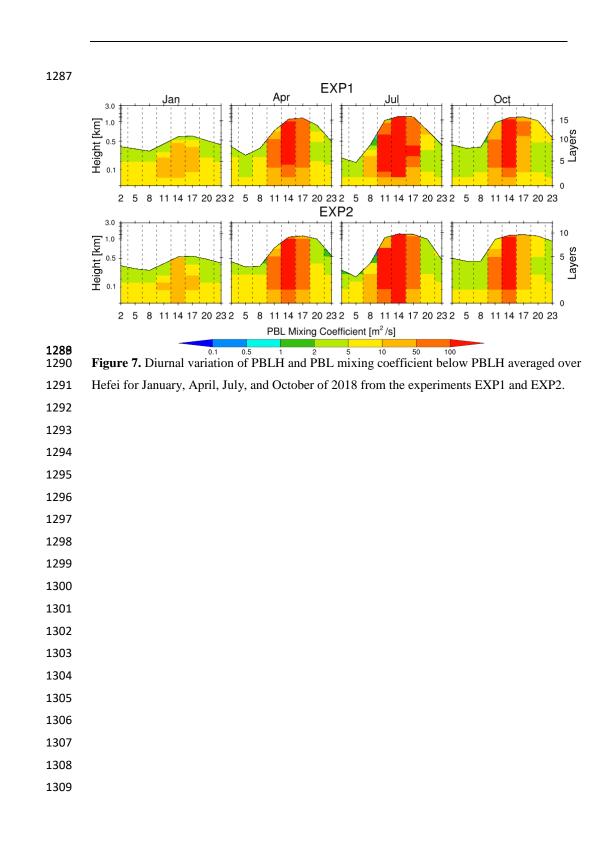
- 1229
- 1230
- 1231
- 1232
- 1233

- 1240
- 1241

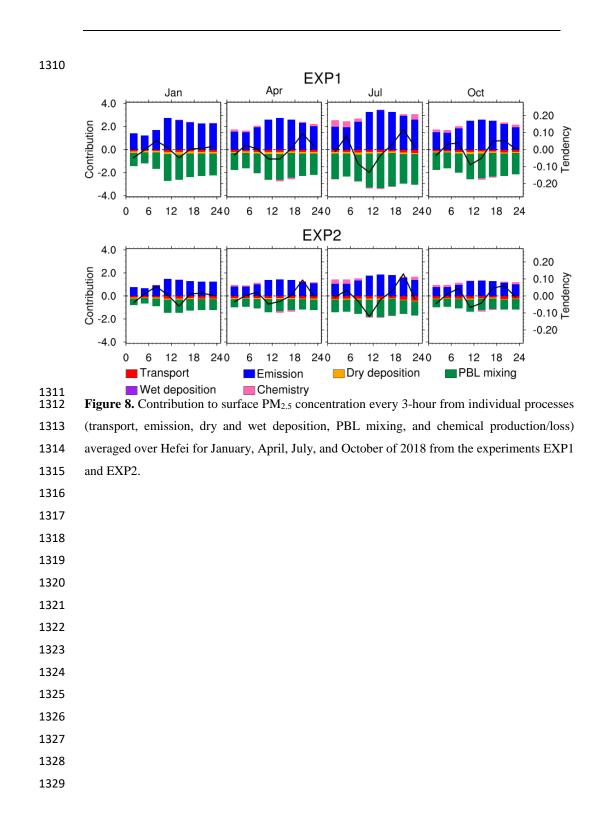

Figure 4. Contribution to surface PM_{2.5} concentration every 3-hour from individual process
(transport, emission, dry and wet deposition, PBL mixing, chemical production/loss) averaged
over Hefei for January, April, July, and October of 2018 from the experiments CTL1, CTL2,
and CTL3. The 3-hourly tendency of surface PM_{2.5} concentration is also shown.

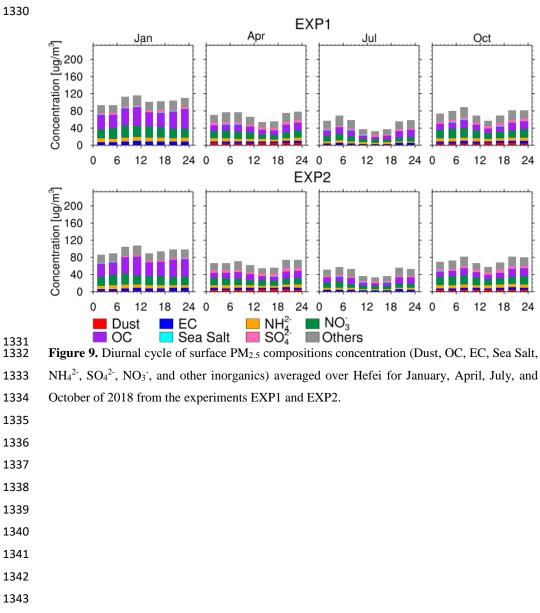


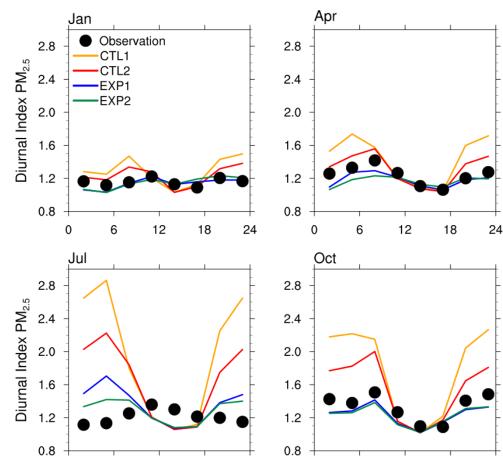

12710.10.512510501001272Figure 6. Diurnal variation of PBLH and PBL mixing coefficient below PBLH averaged over

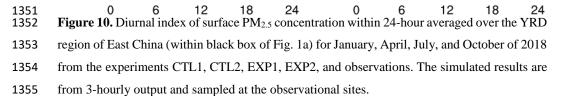
1273 Hefei for January, April, July, and October of 2018 from the experiments CTL1, CTL2, and

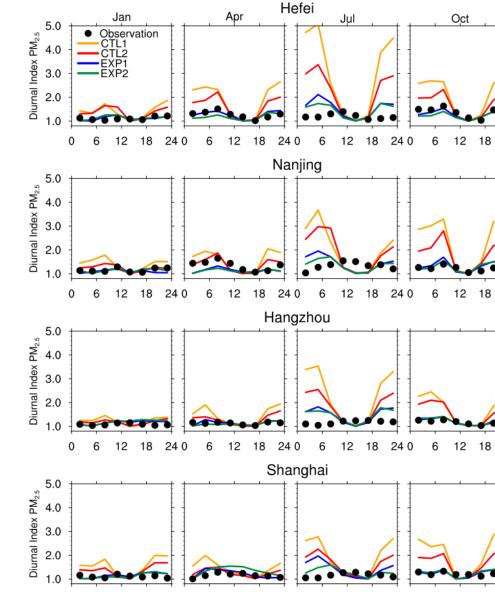
- 1274 CTL3.

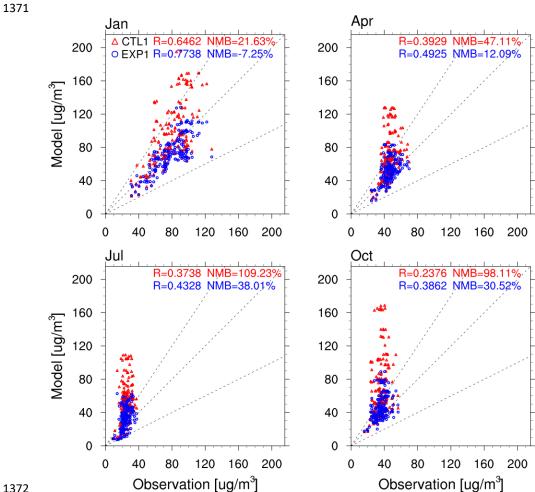


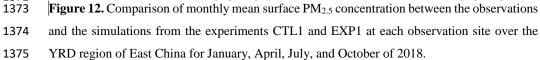


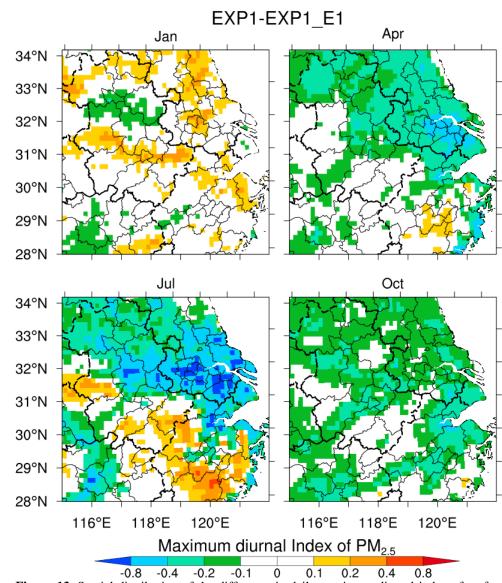


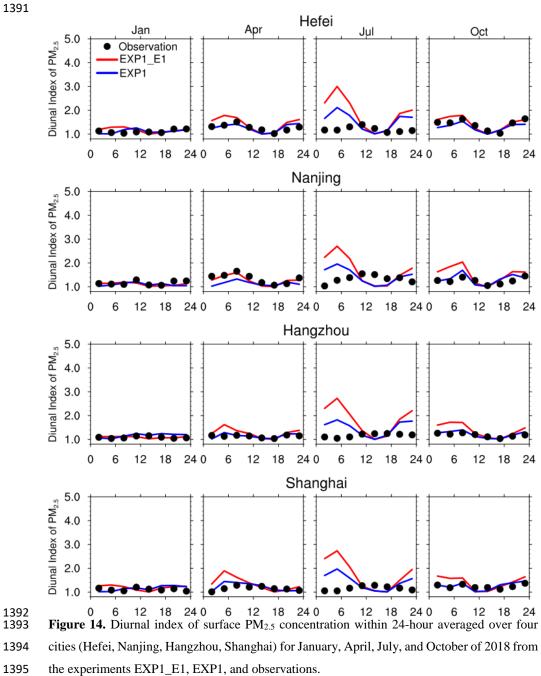




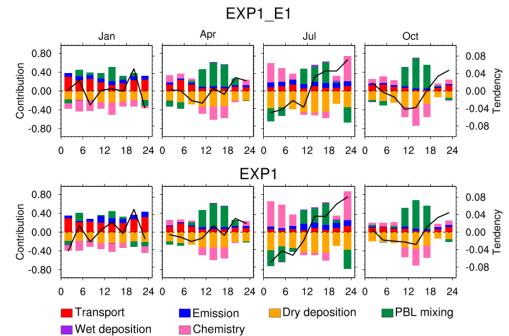


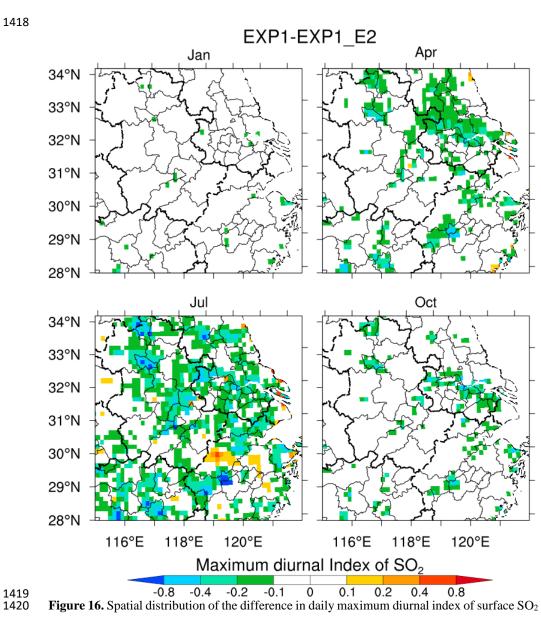

12 18 24 0 12 18 24 0 12 18 24 0 12 18 Figure 11. Diurnal index of surface PM2.5 concentration within 24-hour averaged over four cities (Hefei, Nanjing, Hangzhou, Shanghai) for January, April, July, and October of 2018 from the experiments CTL1, CTL2, EXP1, EXP2, and observations.




1384 -0.8 -0.4 -0.2 -0.1 0 0.1 0.2 0.4 0.8
1385 Figure 13. Spatial distribution of the difference in daily maximum diurnal index of surface
1386 PM_{2.5} between the experiments EXP1 and EXP1_E1 over East China in January, April, July,
1387 and October of 2018.

- 1388
- 1389
- 1390





Wet deposition Chemistry
Figure 15. Contribution to diurnal variation of surface PM_{2.5} concentration from individual
processes (transport, emission, dry and wet deposition, PBL mixing, and chemical
production/loss) averaged over South Anhui for January, April, July, and October of 2018 from
the experiments EXP1_E1 and EXP1.

1421 between the experiments EXP1_E2 and EXP1 over East China in January, April, July, and

- 1422 October of 2018.
- 1423
- 1424
- 1425